Quantum sized engineering of FeTiO3 perovskite for enhanced photocatalytic mineralization of antibiotics: Comprehensive exploration of roles of NCQDs and BNQDs in charge transfer dynamics

光催化 量子点 材料科学 化学工程 纳米颗粒 电子转移 钙钛矿(结构) 催化作用 纳米技术 化学 光化学 生物化学 工程类
作者
Özlem Tuna,Zeynep Balta,Esra Bilgin Şimşek
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:474: 145770-145770 被引量:18
标识
DOI:10.1016/j.cej.2023.145770
摘要

Antibiotics can cause great risk to the environment and human health. Photocatalysis is an effective technology with the potential to eliminate toxic and persistent compounds from water sources. Ferrite titanate (FeTiO3), a type of perovskite catalyst with a small band gap, shows high potential in wastewater treatment processes, but its photocatalytic activity is limited due to its high recombination rate and inadequate charge transfer rate. Herein, we presented quantum sized engineering of FeTiO3 to regulate its optical features by construction with metal-free boron nitride quantum dots (BNQDs) and nitrogen-doped carbon quantum dots (NCQDs). The incorporation of QDs into the perovskite structure enhanced visible light absorption, improved exciton dissociation, accelerated charge transfer, and increased the surface oxygen vacancies. Benefiting from the advantages, the FeTiO3/QDs catalysts displayed enhanced antibiotic decomposition efficiency, as evidenced by the degradation rates of 71.6% and 87.4% for FeTiO3/BNQDs and FeTiO3/NCQDs, respectively, which were higher than that of sole FeTiO3 (66% degradation). The origin of higher photocatalytic performance of the FeTiO3/QDs catalysts was assigned to the boosted separation of charge pairs in which NCQDs promoted electron transfer while BNQDs acted as hole trapper. The effects of oxidants (hydrogen peroxide, peroxymonosulfate) and solution pH on the photocatalytic performance were investigated. This work provides a comprehensive exploration of roles of NCQDs and BNQDs in charge transfer dynamics of FeTiO3 perovskite and introduces highly efficient photocatalysts for green environmental remediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高烙完成签到,获得积分10
刚刚
FashionBoy应助123采纳,获得10
刚刚
1秒前
2秒前
烟花应助CYY采纳,获得10
3秒前
小高同学发布了新的文献求助10
4秒前
5秒前
李天完成签到,获得积分10
6秒前
6秒前
兴奋的万声完成签到,获得积分10
7秒前
可耐的梦琪完成签到,获得积分10
20秒前
果粒橙完成签到 ,获得积分10
21秒前
亦雪发布了新的文献求助20
23秒前
n3pu030036应助小周碎碎念采纳,获得10
24秒前
26秒前
26秒前
彭于晏应助小高同学采纳,获得10
26秒前
充电宝应助科研通管家采纳,获得10
27秒前
科目三应助科研通管家采纳,获得10
27秒前
搜集达人应助liiiii采纳,获得10
27秒前
情怀应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
27秒前
李爱国应助科研通管家采纳,获得10
27秒前
Xenia应助科研通管家采纳,获得10
27秒前
SciGPT应助科研通管家采纳,获得10
27秒前
汉堡包应助科研通管家采纳,获得10
27秒前
深情安青应助科研通管家采纳,获得30
27秒前
28秒前
小虫学长应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
28秒前
Ava应助科研通管家采纳,获得10
28秒前
赘婿应助科研通管家采纳,获得10
28秒前
28秒前
pluto应助科研通管家采纳,获得10
28秒前
28秒前
端木熙完成签到,获得积分20
30秒前
可爱的函函应助hysmoment采纳,获得10
30秒前
khurram发布了新的文献求助10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778363
求助须知:如何正确求助?哪些是违规求助? 3323989
关于积分的说明 10216917
捐赠科研通 3039279
什么是DOI,文献DOI怎么找? 1667934
邀请新用户注册赠送积分活动 798438
科研通“疑难数据库(出版商)”最低求助积分说明 758385