Abstract 12554: Machine Learning-Based Detection of Intraoperative Ischemia Utilizing the VitalDB Database

医学 缺血 阿达布思 心肌梗塞 梯度升压 内科学 心脏病学 接收机工作特性 心电图 机器学习 人工智能 支持向量机 计算机科学 随机森林
作者
Iqram Hussain,Balaji Pandian,Julianna Zeepvat,Antonis A. Armoundas,Richard Boyer
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:148 (Suppl_1)
标识
DOI:10.1161/circ.148.suppl_1.12554
摘要

Introduction: Myocardial ischemia, characterized by insufficient blood supply to the heart, is a critical condition often associated with adverse cardiac events, including myocardial infarction. Detecting intraoperative ischemia holds substantial clinical significance. This study aims to develop a machine-learning (ML) model to detect intraoperative hypotension as a marker of ischemia using electrocardiogram (ECG) features. Hypothesis: We hypothesize that machine-learning algorithms can detect changes in ECG episodes during ischemic or subischemic events associated with prolonged hypotension. Methods: The study utilized the VitalDB database, a comprehensive repository of intraoperative data of 6,388 patients, including ECG recordings and other vital signs. The ML model was a binary classifier of a hypotensive event (MBP <65 mm Hg) or a non-hypotensive event (MBP >75 mm Hg) by analyzing ECG-II and ECG-V5 waveforms. We extracted relevant ECG features such as ST-deviation (ST-elevation or ST-depression), as clinical indicators of myocardial ischemia. The adaptive boosting (AdaBoost), Gradient boosting (GB), and Extreme gradient boosting (XGB) methods, ML boosting techniques, were employed to develop a hypotension predictive model for detecting ischemic episodes. The primary outcomes were the accuracy and the area under the receiver operating characteristic (AUROC) curve. Additionally, we utilized the Shapley Additive Explanations (SHAP) to determine the contribution of the ECG features to the ML model. Results: The GB machine learning model exhibited the best results (Accuracy: 89%, AUROC: 0.92) in predicting hypotensive events. Furthermore, the model achieved high sensitivity and specificity in identifying ischemic episodes. SHAP analysis revealed that ST-deviation is the most significant contributing ECG feature in predicting intraoperative hypotension. Conclusions: These results demonstrate the potential utility of ML-based identification of ECG features in accurately identifying ischemic episodes. Implementation of an improved diagnostic methodology for intraoperative ischemia detection can have a significant impact on patient care, enhancing patient safety and improving surgical outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ja完成签到,获得积分10
刚刚
刚刚
1秒前
852应助甜美的音响采纳,获得10
2秒前
顺心幻波完成签到,获得积分20
2秒前
快乐小霉完成签到,获得积分10
2秒前
2秒前
偶然的风41177完成签到,获得积分10
2秒前
酷波er应助科研通管家采纳,获得30
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
木菁发布了新的文献求助10
4秒前
科研通AI5应助66采纳,获得10
4秒前
贲孱完成签到,获得积分10
5秒前
寻舟者完成签到,获得积分10
5秒前
张玉雪发布了新的文献求助10
6秒前
6秒前
战魂完成签到,获得积分10
6秒前
天涯是我发布了新的文献求助10
7秒前
7秒前
GAO完成签到,获得积分10
7秒前
samuel完成签到,获得积分10
7秒前
yao完成签到,获得积分10
8秒前
8秒前
8秒前
英俊的铭应助谦让芹菜采纳,获得10
8秒前
9秒前
zb完成签到,获得积分10
9秒前
9秒前
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796339
求助须知:如何正确求助?哪些是违规求助? 3341373
关于积分的说明 10306159
捐赠科研通 3057930
什么是DOI,文献DOI怎么找? 1677992
邀请新用户注册赠送积分活动 805746
科研通“疑难数据库(出版商)”最低求助积分说明 762775