Predicting and Evaluating Different Pretreatment Methods on Methane Production from Sludge Anaerobic Digestion via Automated Machine Learning with Ensembled Semisupervised Learning

厌氧消化 生化工程 主成分分析 机器学习 甲烷 无氧运动 计算机科学 人工智能 生物系统 生物 工程类 生态学 生理学
作者
Xiaoshi Cheng,Runze Xu,Yang Wu,Baiyang Tang,Yuting Luo,Wenxuan Huang,Feng Wang,Shiyu Fang,Qian Feng,Yu Cheng,Song Cheng,Jingyang Luo
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:4 (3): 525-539 被引量:8
标识
DOI:10.1021/acsestengg.3c00368
摘要

Accurate prediction of methane production in anaerobic digestion with various pretreatment strategies is of the utmost importance for efficient sludge treatment and resource recovery. Traditional machine learning (ML) algorithms have shown limited prediction accuracy due to challenges in optimizing complex parameters and the scarcity of data. This work proposed a novel integrated system that employed an ensemble semisupervised learning (SSL)-automated ML (AutoML) model with limited variable inputs to reveal the effects of different pretreatments on methane production during sludge digestion with explainable analysis. Considering the direct correlations of the pretreatment type and digestion substrates, the pretreatment type is considered as a hidden variable. Results demonstrated that the AutoML model outperformed the conventional ML models (i.e., support vector regression (SVR), extreme gradient boosting (XGB), etc.), as evidenced by its higher R2 value. Moreover, the integration of SSL further enhanced the prediction accuracy by effectively leveraging unlabeled data, leading to a reduction in the mean squared error from 11.3 to 9.7. Explainable analysis results revealed the significance of different variables and the utmost importance of operating time, followed by proteins, carbohydrates, chemical oxygen demand, and volatile fatty acids. Furthermore, principal component and correlation analysis unveiled the interconnected relationships among substrate concentration, microbial communities, and metabolic functions for methane production and found that the increasing substrate concentration promoted the enrichment of functional microbial and metabolic functions. These insights shed light on the advantages of SSL-AutoML in predicting methane production in anaerobic digestion systems and elucidate the dependence relationships with key variables, offering valuable guidance for effective sludge pretreatment with enhanced resource recovery capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
淡定翠容完成签到,获得积分10
1秒前
805完成签到,获得积分10
2秒前
dhts完成签到,获得积分10
2秒前
csxx完成签到,获得积分20
2秒前
onestepcloser完成签到 ,获得积分10
3秒前
WHEN完成签到,获得积分10
3秒前
wanci应助陈椅子的求学采纳,获得10
3秒前
4秒前
大个应助li采纳,获得10
4秒前
Arthur完成签到 ,获得积分10
4秒前
4秒前
博思好行完成签到,获得积分10
5秒前
十里桃花不徘徊完成签到,获得积分10
5秒前
哇哈哈哈完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
二十七垚完成签到,获得积分10
6秒前
7秒前
7秒前
krk发布了新的文献求助10
7秒前
彭于晏应助沂静采纳,获得10
7秒前
小贝壳要快乐吖完成签到,获得积分10
7秒前
博思好行发布了新的文献求助10
8秒前
9秒前
欢呼便当完成签到,获得积分10
13秒前
13秒前
科研通AI5应助拓跋问儿采纳,获得10
13秒前
Ton汤发布了新的文献求助10
14秒前
专注无施完成签到,获得积分10
14秒前
ymu完成签到,获得积分20
15秒前
Jackie_Li完成签到,获得积分10
16秒前
16秒前
16秒前
妮妮爱smile完成签到,获得积分10
17秒前
温暖发布了新的文献求助10
17秒前
Shan5完成签到,获得积分10
18秒前
叶叶完成签到,获得积分10
18秒前
隐形曼青应助yydsyk采纳,获得10
18秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830751
求助须知:如何正确求助?哪些是违规求助? 3373073
关于积分的说明 10477730
捐赠科研通 3093242
什么是DOI,文献DOI怎么找? 1702418
邀请新用户注册赠送积分活动 819024
科研通“疑难数据库(出版商)”最低求助积分说明 771203