E-YOLO: Recognition of estrus cow based on improved YOLOv8n model

发情周期 背景(考古学) 计算机科学 算法 动物科学 生物 古生物学
作者
Zheng Wang,Zhixin Hua,Yuchen Wen,Shujin Zhang,Xingshi Xu,Huaibo Song
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122212-122212 被引量:46
标识
DOI:10.1016/j.eswa.2023.122212
摘要

Timely and accurately identifying estrus cows is essential in modern dairy farming. To address the challenges of delayed and inefficient manual monitoring of cow estrus, an improved model based on You Only Look Once v8 Nano (YOLOv8n), named Estrus-YOLO (E-YOLO), was proposed to identify estrus cows efficiently. In this research, the dataset was labelled not only for cow mounting behavior but also innovatively labelled individual estrus cows, enabling precise identification of estrus cows. Due to the small size of cow in the field of view, the Complete Intersection over Union (CIoU) loss was replaced with the Normalized Wasserstein Distance (NWD) loss to reduce sensitivity to position deviations of target cows. Context Information Augmentation Module (CIAM) was proposed to enhance the contextual information for estrus cows by utilizing cow mounting behavior as reference features. Furthermore, the Triplet Attention Module (TAM) was incorporated into the Backbone to enhance the network's focus on individual estrus cows through cross-dimensional interactions. To validate the effectiveness of the algorithm, experiments were conducted on a dataset consisting of 1716 instances of cow mounting behavior. The experimental results demonstrated that the proposed model achieved an Average Precision of estrus (APestrus) of 93.90%, Average Precision of mounting (APmounting) of 95.70%, F1-score of 93.74%, detection speed of 8.1 ms/frame, with the parameters of 3.04 M, and the Floating-point Operations (FLOPs) of 9.9 G. Compared to the YOLOv8 model, the proposed model exhibited an improvement of 5.40% in APestrus and 3.30% in APmounting. When compared to Single Shot MultiBox Detector (SSD), Faster Region Convolutional Neural Network (Faster R-CNN), YOLOv5n, YOLOv5s, YOLOv7-tiny, YOLOv8n, and YOLOv8s, the proposed model had fewer parameters, FLOPs, and fast detection speed. Except for APmounting, which was slightly lower than SSD, the rest accuracy indexes were the highest, showing good comprehensive performance and meeting the requirements of accurate and rapid identification of estrus cows. The proposed model was helpful for accurate and real-time monitoring of estrus cows in complex breeding environments and all-weather conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
共享精神应助JianmaoChen采纳,获得10
3秒前
leilei发布了新的文献求助10
3秒前
香蕉觅云应助ccm采纳,获得10
3秒前
英姑应助热情千风采纳,获得10
4秒前
粗暴的平凡完成签到,获得积分10
4秒前
好好学习完成签到,获得积分10
6秒前
万能图书馆应助CQ采纳,获得10
8秒前
soon发布了新的文献求助10
8秒前
8秒前
华仔应助小小采纳,获得10
9秒前
13秒前
14秒前
17秒前
17秒前
斯文败类应助cloud采纳,获得10
18秒前
小远发布了新的文献求助10
20秒前
木光发布了新的文献求助10
20秒前
CQ发布了新的文献求助10
21秒前
21秒前
小磊完成签到,获得积分10
22秒前
23秒前
kookery发布了新的文献求助10
23秒前
Xiaojiu完成签到 ,获得积分10
24秒前
爆米花应助科研通管家采纳,获得10
28秒前
ZeKaWa应助科研通管家采纳,获得10
28秒前
爆米花应助科研通管家采纳,获得10
28秒前
lkjh应助科研通管家采纳,获得10
28秒前
Orange应助科研通管家采纳,获得10
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
李健应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
29秒前
Fan完成签到,获得积分10
30秒前
bobo0212发布了新的文献求助10
31秒前
黎乐荷发布了新的文献求助10
33秒前
传奇3应助迷你的沛萍采纳,获得10
33秒前
77完成签到,获得积分10
35秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4065237
求助须知:如何正确求助?哪些是违规求助? 3603788
关于积分的说明 11445922
捐赠科研通 3326437
什么是DOI,文献DOI怎么找? 1828754
邀请新用户注册赠送积分活动 898904
科研通“疑难数据库(出版商)”最低求助积分说明 819394