E-YOLO: Recognition of estrus cow based on improved YOLOv8n model

发情周期 背景(考古学) 计算机科学 算法 动物科学 生物 古生物学
作者
Zheng Wang,Zhixin Hua,Yuchen Wen,Shujin Zhang,Xingshi Xu,Huaibo Song
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122212-122212 被引量:46
标识
DOI:10.1016/j.eswa.2023.122212
摘要

Timely and accurately identifying estrus cows is essential in modern dairy farming. To address the challenges of delayed and inefficient manual monitoring of cow estrus, an improved model based on You Only Look Once v8 Nano (YOLOv8n), named Estrus-YOLO (E-YOLO), was proposed to identify estrus cows efficiently. In this research, the dataset was labelled not only for cow mounting behavior but also innovatively labelled individual estrus cows, enabling precise identification of estrus cows. Due to the small size of cow in the field of view, the Complete Intersection over Union (CIoU) loss was replaced with the Normalized Wasserstein Distance (NWD) loss to reduce sensitivity to position deviations of target cows. Context Information Augmentation Module (CIAM) was proposed to enhance the contextual information for estrus cows by utilizing cow mounting behavior as reference features. Furthermore, the Triplet Attention Module (TAM) was incorporated into the Backbone to enhance the network's focus on individual estrus cows through cross-dimensional interactions. To validate the effectiveness of the algorithm, experiments were conducted on a dataset consisting of 1716 instances of cow mounting behavior. The experimental results demonstrated that the proposed model achieved an Average Precision of estrus (APestrus) of 93.90%, Average Precision of mounting (APmounting) of 95.70%, F1-score of 93.74%, detection speed of 8.1 ms/frame, with the parameters of 3.04 M, and the Floating-point Operations (FLOPs) of 9.9 G. Compared to the YOLOv8 model, the proposed model exhibited an improvement of 5.40% in APestrus and 3.30% in APmounting. When compared to Single Shot MultiBox Detector (SSD), Faster Region Convolutional Neural Network (Faster R-CNN), YOLOv5n, YOLOv5s, YOLOv7-tiny, YOLOv8n, and YOLOv8s, the proposed model had fewer parameters, FLOPs, and fast detection speed. Except for APmounting, which was slightly lower than SSD, the rest accuracy indexes were the highest, showing good comprehensive performance and meeting the requirements of accurate and rapid identification of estrus cows. The proposed model was helpful for accurate and real-time monitoring of estrus cows in complex breeding environments and all-weather conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾鸣发布了新的文献求助10
1秒前
放倒巨大豆蔓完成签到 ,获得积分10
1秒前
2秒前
2025zmx发布了新的文献求助30
3秒前
3秒前
科研通AI5应助yyx采纳,获得10
3秒前
可爱的函函应助主旋律采纳,获得10
4秒前
5秒前
6秒前
丶whist完成签到,获得积分10
7秒前
科研通AI5应助Zekun采纳,获得10
8秒前
maoyuni发布了新的文献求助10
8秒前
搜集达人应助茂茂采纳,获得10
10秒前
10秒前
11秒前
深藏blue发布了新的文献求助10
11秒前
田様应助wenlin采纳,获得10
11秒前
可爱的函函应助雪山飞龙采纳,获得10
12秒前
12秒前
杭谷波完成签到,获得积分10
12秒前
李子敬完成签到,获得积分10
13秒前
陈小纯完成签到,获得积分20
14秒前
15秒前
yyx发布了新的文献求助10
16秒前
16秒前
画龙完成签到,获得积分10
17秒前
田様应助云上人采纳,获得10
19秒前
clairevox完成签到,获得积分10
22秒前
科研通AI5应助Adzuki0812采纳,获得10
23秒前
24秒前
24秒前
深情安青应助深藏blue采纳,获得10
25秒前
大模型应助闲得追月时采纳,获得30
26秒前
26秒前
26秒前
Willing发布了新的文献求助10
26秒前
香蕉觅云应助孤独灰狼采纳,获得10
26秒前
27秒前
28秒前
胡先生发布了新的文献求助30
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795227
求助须知:如何正确求助?哪些是违规求助? 3340218
关于积分的说明 10299325
捐赠科研通 3056829
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805274
科研通“疑难数据库(出版商)”最低求助积分说明 762420