Damage detection of thin plates by fusing variational mode decomposition and spectral entropy

熵(时间箭头) 模式(计算机接口) 人工智能 计算机科学 数学 模式识别(心理学) 物理 材料科学 量子力学 操作系统
作者
Guangtao Lu,Zhiwei Zhou,Longyun Wu,Yangtao Wang,Tao Wang,Dan Yang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:1
标识
DOI:10.1177/14759217241239989
摘要

This paper presents a new approach for damage detection in thin plates by fusing variational mode decomposition and spectral entropy (VMD-SE). In this method, after the received signal is decomposed into some intrinsic mode functions (IMFs) by variational mode decomposition (VMD), the spectral entropy ratio of the first and last IMFs is calculated for optimizing the VMD’s parameters and improving its decomposition performance. Moreover, the cross-correlation coefficient between the decomposed IMFs and the reference signal is computed to separate the desired IMF, which contains more damage information. Finally, the spectral entropy of the obtained IMF is calculated as an indicator for assessing the damage’s severity. The comparative analysis of the simulated signal clearly shows that only the proposed method can successfully separate the damage-related and reference signals. To verify the VMD-SE method, damage detection of two different types of damage on aluminum and composite fiber-reinforced polymer (CFRP) plates is conducted by using this new approach. The experimental results demonstrate that the parameters of VMD affect greatly its decomposition performance, and the best parameters are selected. The results also indicate that the normalized spectral entropy monotonically increases when the diameter of the through-hole or the length of the scratch increases. In addition, the correlation coefficients of the fitting lines of the plates are larger than 0.998. The experimental results of aluminum specimens demonstrate that the damage’s location has an influence on the normalized spectral entropy. At last, based on the linear relationship, the severity of damage in the fourth specimen is identified. The identification results demonstrate that the relative error of the aluminum and CFRP plates is less than 7.34%, which indicates that this new algorithm by fusing VMD and spectral entropy can detect the damage size in thin plates accurately and efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dlut0407完成签到,获得积分0
2秒前
李健的小迷弟应助乐观囧采纳,获得10
2秒前
gzf完成签到 ,获得积分10
4秒前
神勇千万完成签到,获得积分10
4秒前
朻安完成签到,获得积分10
5秒前
林子完成签到 ,获得积分10
7秒前
9秒前
xlli00完成签到,获得积分10
9秒前
宇文数学完成签到 ,获得积分10
9秒前
11秒前
Theodore完成签到,获得积分10
11秒前
waikeyan完成签到,获得积分10
12秒前
若朴祭司完成签到,获得积分10
13秒前
andrew完成签到 ,获得积分10
13秒前
John完成签到 ,获得积分10
14秒前
Jackson333完成签到,获得积分10
14秒前
风趣飞柏发布了新的文献求助10
14秒前
LJJ完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
好的昂完成签到,获得积分10
16秒前
青衣完成签到,获得积分10
16秒前
CipherSage应助儒雅的巧曼采纳,获得30
17秒前
小路完成签到 ,获得积分10
17秒前
忞航完成签到 ,获得积分10
17秒前
科研小白完成签到,获得积分10
21秒前
小路关注了科研通微信公众号
21秒前
篮孩子完成签到,获得积分10
22秒前
执着夏岚完成签到 ,获得积分10
23秒前
善学以致用应助风趣飞柏采纳,获得10
24秒前
caiweihong完成签到 ,获得积分10
24秒前
MFNM完成签到,获得积分10
25秒前
在我梦里绕完成签到,获得积分10
26秒前
Kevin完成签到,获得积分10
26秒前
笑一笑完成签到,获得积分10
26秒前
27秒前
周星星完成签到,获得积分10
27秒前
神山识完成签到,获得积分10
27秒前
谦让月饼完成签到 ,获得积分10
28秒前
大气的雁桃完成签到,获得积分10
28秒前
hy完成签到,获得积分10
28秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3892544
求助须知:如何正确求助?哪些是违规求助? 3435299
关于积分的说明 10791845
捐赠科研通 3160224
什么是DOI,文献DOI怎么找? 1745457
邀请新用户注册赠送积分活动 842903
科研通“疑难数据库(出版商)”最低求助积分说明 786929