Assessing the Influence of B‐US, CDFI, SE, and Patient Age on Predicting Molecular Subtypes in Breast Lesions Using Deep Learning Algorithms

医学 超声波 乳房成像 彩色多普勒 混乱 诊断准确性 乳腺超声检查 放射科 人工智能 超声科 乳腺癌 内科学 乳腺摄影术 癌症 计算机科学 心理学 精神分析
作者
Weiyong Liu,Dongyue Wang,Liu Le,Zhiguo Zhou
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:43 (8): 1375-1388
标识
DOI:10.1002/jum.16460
摘要

Objectives Our study aims to investigate the impact of B‐mode ultrasound (B‐US) imaging, color Doppler flow imaging (CDFI), strain elastography (SE), and patient age on the prediction of molecular subtypes in breast lesions. Methods Totally 2272 multimodal ultrasound imaging was collected from 198 patients. The ResNet‐18 network was employed to predict four molecular subtypes from B‐US imaging, CDFI, and SE of patients with different ages. All the images were split into training and testing datasets by the ratio of 80%:20%. The predictive performance on testing dataset was evaluated through 5 metrics including mean accuracy, precision, recall, F1‐scores, and confusion matrix. Results Based on B‐US imaging, the test mean accuracy is 74.50%, the precision is 74.84%, the recall is 72.48%, and the F1‐scores is 0.73. By combining B‐US imaging with CDFI, the results were increased to 85.41%, 85.03%, 85.05%, and 0.84, respectively. With the integration of B‐US imaging and SE, the results were changed to 75.64%, 74.69%, 73.86%, and 0.74, respectively. Using images from patients under 40 years old, the results were 90.48%, 90.88%, 88.47%, and 0.89. When images from patients who are above 40 years old, they were changed to 81.96%, 83.12%, 80.5%, and 0.81, respectively. Conclusion Multimodal ultrasound imaging can be used to accurately predict the molecular subtypes of breast lesions. In addition to B‐US imaging, CDFI rather than SE contribute further to improve predictive performance. The predictive performance is notably better for patients under 40 years old compared with those who are 40 years old and above.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助kk采纳,获得10
刚刚
tamo完成签到,获得积分10
1秒前
zcx1995完成签到,获得积分10
3秒前
jayliu完成签到,获得积分10
3秒前
3秒前
Ink完成签到,获得积分20
8秒前
广州东站发布了新的文献求助10
9秒前
小薇丸子完成签到,获得积分10
10秒前
搞搞科研发布了新的文献求助10
11秒前
D33sama完成签到,获得积分10
12秒前
明亮晓旋发布了新的文献求助30
14秒前
14秒前
15秒前
研友_LN25rL完成签到,获得积分10
16秒前
坚若磐石完成签到,获得积分10
18秒前
18秒前
赘婿应助ywzwszl采纳,获得10
19秒前
我知道完成签到,获得积分10
19秒前
23秒前
kk完成签到,获得积分20
23秒前
23秒前
24秒前
kk发布了新的文献求助10
28秒前
30秒前
31秒前
艺善艺善亮晶晶完成签到,获得积分10
31秒前
33秒前
34秒前
34秒前
35秒前
飞太难完成签到,获得积分10
35秒前
领导范儿应助Survivor采纳,获得10
35秒前
36秒前
37秒前
胡周瑜发布了新的文献求助10
39秒前
欧小凡发布了新的社区帖子
39秒前
明亮晓旋完成签到,获得积分20
40秒前
南楼青主发布了新的文献求助10
41秒前
whilers发布了新的文献求助10
41秒前
42秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742