Improving the simulations of the hydrological model in the karst catchment by integrating the conceptual model with machine learning models

概念模型 计算机科学 地表径流 过程(计算) 极限学习机 环境科学 水文学(农业) 机器学习 地质学 生态学 人工神经网络 岩土工程 数据库 生物 操作系统
作者
Cenk Sezen,Mojca Šraj
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:926: 171684-171684 被引量:5
标识
DOI:10.1016/j.scitotenv.2024.171684
摘要

Hydrological modelling can be complex in nonhomogeneous catchments with diverse geological, climatic, and topographic conditions. In this study, an integrated conceptual model including the snow module with machine learning modelling approaches was implemented for daily rainfall-runoff modelling in mostly karst Ljubljanica catchment, Slovenia, which has heterogeneous characteristics and is potentially exposed to extreme events that make the modelling process more challenging and crucial. In this regard, the conceptual model CemaNeige Génie Rural à 6 paramètres Journalier (CemaNeige GR6J) was combined with machine learning models, namely wavelet-based support vector regression (WSVR) and wavelet-based multivariate adaptive regression spline (WMARS) to enhance modelling performance. In this study, the performance of the models was comprehensively investigated, considering their ability to forecast daily extreme runoff. Although CemaNeige GR6J yielded a very good performance, it overestimated low flows. The WSVR and WMARS models yielded poorer performance than the conceptual and hybrid models. The hybrid model approach improved the performance of the machine learning models and the conceptual model by revealing the linkage between variables and runoff in the conceptual model, which provided more accurate results for extreme flows. Accordingly, the hybrid models improved the forecasting performance of the maximum flows up to 40 % and 61 %, and minimum flows up to 73 % and 72 % compared to the CemaNeige GR6J and stand-alone machine learning models. In this regard, the hybrid model approach can enhance the daily rainfall-runoff modelling performance in nonhomogeneous and karst catchments where the hydrological process can be more complicated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wyl完成签到,获得积分10
1秒前
顺心的舞蹈完成签到,获得积分10
2秒前
情怀应助读书的时候采纳,获得10
4秒前
cp发布了新的文献求助10
5秒前
5秒前
CipherSage应助小池同学采纳,获得10
6秒前
科目三应助米娅采纳,获得10
6秒前
9秒前
10秒前
10秒前
10秒前
12秒前
zzz关注了科研通微信公众号
13秒前
14秒前
Yayaya发布了新的文献求助10
14秒前
wsd发布了新的文献求助30
15秒前
zp560发布了新的文献求助10
17秒前
20秒前
21秒前
icing完成签到,获得积分10
22秒前
小米完成签到,获得积分20
22秒前
23秒前
24秒前
李健应助CinemaAAA采纳,获得10
25秒前
DD发布了新的文献求助10
27秒前
厄页石页发布了新的文献求助10
28秒前
29秒前
lin发布了新的文献求助10
30秒前
huxs完成签到,获得积分10
31秒前
青水发布了新的文献求助10
31秒前
31秒前
CodeCraft应助天真的皓轩采纳,获得10
32秒前
三岁半完成签到 ,获得积分10
32秒前
XSY发布了新的文献求助10
33秒前
liuy发布了新的文献求助10
33秒前
一期愈合发布了新的文献求助10
34秒前
36秒前
37秒前
研友_r8YKvn完成签到,获得积分10
38秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097361
求助须知:如何正确求助?哪些是违规求助? 3635023
关于积分的说明 11522298
捐赠科研通 3345348
什么是DOI,文献DOI怎么找? 1838581
邀请新用户注册赠送积分活动 906166
科研通“疑难数据库(出版商)”最低求助积分说明 823492