MVQS: Robust multi-view instance-level cost-sensitive learning method for imbalanced data classification

计算机科学 人工智能 机器学习 数据挖掘 模式识别(心理学)
作者
Zhaojie Hou,Jingjing Tang,Yan Li,Saiji Fu,Yingjie Tian
出处
期刊:Information Sciences [Elsevier BV]
卷期号:: 120467-120467
标识
DOI:10.1016/j.ins.2024.120467
摘要

Multi-view imbalanced learning is to handle the datasets with multi-view representations and imbalanced classes. Existing multi-view imbalanced learning methods can be divided into two main categories: multi-view ensemble learning and multi-view cost-sensitive learning. However, these methods suffer from the following problems: 1) neglecting either consensus or complementary information, 2) complex preprocessing and information fusion in multi-view ensemble learning and manual assignment of misclassification costs in multi-view cost-sensitive learning, and 3) limited ability to handle noisy samples. Therefore, we aim to design a concise and unified framework to grapple with the multi-view representations, imbalanced classes and noisy samples simultaneously. Inspired by the merits of support vector machine (SVM) and quadratic type squared error (QTSE) loss function, we propose a robust multi-view instance-level cost-sensitive SVM with QTSE loss (MVQS) for imbalanced data classification. The consensus regularization term and combination weight strategy are employed to fully exploit multi-view information. The QTSE loss can adaptively impose instance-level penalties to the misclassification of samples, and make MVQS be robust to noisy samples. We solve MVQS with the alternating direction method of multipliers (ADMM) and the gradient descent (GD) algorithm. Comprehensive experiments validate that MVQS is more competitive and robust than other benchmark approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CRSG发布了新的文献求助30
1秒前
在水一方应助肖木木采纳,获得10
3秒前
香蕉觅云应助苏苏采纳,获得10
3秒前
奥特超曼发布了新的文献求助30
5秒前
超级蘑菇完成签到,获得积分10
6秒前
7秒前
Dobby完成签到,获得积分10
7秒前
你猜发布了新的文献求助10
9秒前
10秒前
Xiaoqiu完成签到 ,获得积分10
12秒前
Akim应助sluck采纳,获得10
12秒前
13秒前
wenwen发布了新的文献求助10
16秒前
共享精神应助田田采纳,获得30
22秒前
liudy完成签到,获得积分10
23秒前
我爱说实话完成签到,获得积分10
25秒前
26秒前
29秒前
29秒前
景代丝完成签到,获得积分10
30秒前
liudy发布了新的文献求助10
31秒前
涵泽发布了新的文献求助10
31秒前
小二郎应助焱垚采纳,获得10
31秒前
33秒前
Orange应助墨尔根戴青采纳,获得10
34秒前
领导范儿应助早日毕业佳采纳,获得10
36秒前
SYLH应助peng采纳,获得10
36秒前
Kkkkk关注了科研通微信公众号
36秒前
小林神完成签到,获得积分10
42秒前
yxrose完成签到,获得积分10
42秒前
44秒前
46秒前
46秒前
47秒前
47秒前
夏侯德东完成签到,获得积分10
48秒前
CodeCraft应助yfuujty采纳,获得10
49秒前
50秒前
50秒前
50秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842873
求助须知:如何正确求助?哪些是违规求助? 3384852
关于积分的说明 10537856
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710311
邀请新用户注册赠送积分活动 823582
科研通“疑难数据库(出版商)”最低求助积分说明 774149