Time-series land cover change detection using deep learning-based temporal semantic segmentation

遥感 变更检测 土地覆盖 分割 系列(地层学) 计算机科学 封面(代数) 人工智能 土地利用 地质学 机械工程 工程类 土木工程 古生物学
作者
Haixu He,Jining Yan,Dong Liang,Zhongchang Sun,Jun Li,Lizhe Wang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:305: 114101-114101 被引量:56
标识
DOI:10.1016/j.rse.2024.114101
摘要

The process of sustainable urban development is accompanied by frequent and complex land cover changes, and thus, clarify accurate information on land cover changes can provide scientific data for urban management. To characterize urban development at an accurate spatiotemporal scale, a change detection model is not only required to provide accurate location (Where) and time (When) of the changes, but also semantic information on the change types (What). Accordingly, this study proposed a deep learning method for temporal semantic segmentation change detection (TSSCD) that obtains information on the where, when, and what of changes simultaneously. TSSCD model bridges the semantic gap between remote sensing time series abrupt changes and land cover changes by learning the month-to-month mapping from spectral information to land cover types. We implemented a temporal semantic segmentation model based on the most classic fully convolutional network, where all two-dimensional convolutions and pooling operations were replaced with one-dimensional. We conducted tests on the TSSCD in several urban study areas, and it consistently exhibited good accuracy. In most cases, it outperformed the BFAST and CCDC algorithms, except when only a single spectral band was used. Simultaneously, we analyzed the minimum data requirements for training a TSSCD. The TSSCD currently faces challenges in achieving strong generalization beyond the training data distribution. Additionally, we observed that change detection for specific land cover types can be achieved through the flexible configuration of TSSCD. Finally, we explored a method for constructing datasets using existing products to minimize data annotation efforts, yielding promising results. However, there is still some gap compared to complete manual annotation. Overall, the TSSCD model provided a novel solution to accurately characterize sustainable urban development at the spatiotemporal scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aco发布了新的文献求助10
刚刚
刚刚
vjin发布了新的文献求助10
刚刚
1秒前
shanshan3000完成签到,获得积分10
2秒前
冷昆柏完成签到 ,获得积分10
2秒前
标致的羊发布了新的文献求助10
2秒前
打打应助neo7363采纳,获得10
2秒前
3秒前
丘比特应助青禾采纳,获得10
3秒前
耶比环肽发布了新的文献求助10
4秒前
奥夫发布了新的文献求助10
4秒前
小狗味儿发布了新的文献求助10
4秒前
奔跑的胖纸给奔跑的胖纸的求助进行了留言
5秒前
vampire完成签到 ,获得积分10
5秒前
江南小水龟完成签到,获得积分10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
wangguoxi应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
6秒前
悠悠应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得30
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
H4ppy_n3w_y34r应助nana采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得30
6秒前
flypig1616完成签到,获得积分10
6秒前
6秒前
6秒前
小二郎应助初余采纳,获得10
7秒前
香蕉觅云应助shadow采纳,获得30
7秒前
7秒前
8秒前
FashionBoy应助zyx采纳,获得10
8秒前
spin发布了新的文献求助10
8秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430497
求助须知:如何正确求助?哪些是违规求助? 4543659
关于积分的说明 14188414
捐赠科研通 4461921
什么是DOI,文献DOI怎么找? 2446355
邀请新用户注册赠送积分活动 1437748
关于科研通互助平台的介绍 1414473