Edge U-Net: Brain tumor segmentation using MRI based on deep U-Net model with boundary information

分割 计算机科学 人工智能 掷骰子 深度学习 卷积神经网络 图像分割 磁共振成像 模式识别(心理学) 脑瘤 边界(拓扑) 病理 数学 医学 放射科 几何学 数学分析
作者
Ahmed M. Gab Allah,Amany Sarhan,Nada M. Elshennawy
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:213: 118833-118833 被引量:106
标识
DOI:10.1016/j.eswa.2022.118833
摘要

Blood clots in the brain are frequently caused by brain tumors. Early detection of these clots has the potential to significantly lower morbidity and mortality in cases of brain cancer. It is thus indispensable for a proper brain tumor diagnosis and treatment that tumor tissue magnetic resonance images (MRI) be accurately segmented. Several deep learning approaches to the segmentation of brain tumor MRIs have been proposed, each having been designed to properly map out ‘boundaries’ and thus achieve highly accurate segmentation. This study introduces a deep convolution neural network (DCNN), named the Edge U-Net model, built as an encoder-decoder structure inspired by the U-Net architecture. The Edge U-Net model can more precisely localise tumors by merging boundary-related MRI data with the main data from brain MRIs. In the decoder phase, boundary-related information from original MRIs of different scales is integrated with the appropriate adjacent contextual information. A novel loss function was added to this segmentation model to improve performance. This loss function is enhanced with boundary information, allowing the learning process to produce more precise results. In the conducted experiments, a public dataset with 3064 T1-Weighted Contrast Enhancement (T1-CE) images of three well-known brain tumor types were used. The experiment demonstrated that the proposed framework achieved satisfactory Dice score values compared with state-of-art models, with highly accurate differentiation of brain tissues. It achieved Dice scores of 88.8 % for meningioma, 91.76 % for glioma, and 87.28 % for pituitary tumors. Computations of other performance metrics such as the Jaccard index, sensitivity, and specificity were also conducted. According to the results, the Edge U-Net model is a potential diagnostic tool that can be used to help radiologists more precisely segment brain tumor tissue images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
科目三应助魔王小豆包采纳,获得10
6秒前
Aurelia应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
一叶知秋应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
RadioMars应助科研通管家采纳,获得10
8秒前
Blue应助科研通管家采纳,获得10
8秒前
不配.应助科研通管家采纳,获得20
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
fighting发布了新的文献求助20
8秒前
8秒前
8秒前
充电宝应助科研通管家采纳,获得10
9秒前
七尺大儒发布了新的文献求助30
9秒前
9秒前
9秒前
11秒前
13秒前
orixero应助淡定初蓝采纳,获得10
14秒前
15秒前
15秒前
17秒前
pups发布了新的文献求助20
17秒前
18秒前
18秒前
李梓萍发布了新的文献求助10
18秒前
危机的盼晴完成签到,获得积分10
19秒前
打打应助猪八戒采纳,获得10
21秒前
LANER完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
一番发布了新的文献求助10
22秒前
他二舅flying完成签到,获得积分10
22秒前
山城小辣椒完成签到,获得积分10
23秒前
23秒前
aaa王哥发布了新的文献求助10
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4260156
求助须知:如何正确求助?哪些是违规求助? 3793081
关于积分的说明 11896577
捐赠科研通 3440645
什么是DOI,文献DOI怎么找? 1888258
邀请新用户注册赠送积分活动 938982
科研通“疑难数据库(出版商)”最低求助积分说明 844362