Automated BI-RADS classification of lesions using pyramid triple deep feature generator technique on breast ultrasound images

人工智能 计算机科学 双雷达 深度学习 模式识别(心理学) 支持向量机 乳房成像 乳腺超声检查 双线性插值 特征(语言学) 上下文图像分类 特征提取 棱锥(几何) 分类器(UML) 学习迁移 乳腺癌 乳腺摄影术 图像(数学) 计算机视觉 医学 数学 癌症 语言学 哲学 几何学 内科学
作者
Ela Kaplan,Wai Yee Chan,Şengül Doğan,Prabal Datta Barua,Hacı Taner Bulut,Türker Tuncer,Mert Cizik,Ru San Tan,U. Rajendra Acharya
出处
期刊:Medical Engineering & Physics [Elsevier BV]
卷期号:108: 103895-103895 被引量:21
标识
DOI:10.1016/j.medengphy.2022.103895
摘要

Ultrasound (US) is an important imaging modality used to assess breast lesions for malignant features. In the past decade, many machine learning models have been developed for automated discrimination of breast cancer versus normal on US images, but few have classified the images based on the Breast Imaging Reporting and Data System (BI-RADS) classes. This work aimed to develop a model for classifying US breast lesions using a BI-RADS classification framework with a new multi-class US image dataset. We proposed a deep model that combined a novel pyramid triple deep feature generator (PTDFG) with transfer learning based on three pre-trained networks for creating deep features. Bilinear interpolation was applied to decompose the input image into four images of successively smaller dimensions, constituting a four-level pyramid for downstream feature generation with the pre-trained networks. Neighborhood component analysis was applied to the generated features to select each network's 1,000 most informative features, which were fed to support vector machine classifier for automated classification using a ten-fold cross-validation strategy. Our proposed model was validated using a new US image dataset containing 1,038 images divided into eight BI-RADS classes and histopathological results. We defined three classification schemes: Case 1 involved the classification of all images into eight categories; Case 2, classification of breast US images into five BI-RADS classes; and Case 3, classification of BI-RADS 4 lesions into benign versus malignant classes. Our PTDFG-based transfer learning model attained accuracy rates of 79.29%, 80.42%, and 88.67% for Case 1, Case 2, and Case 3, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助goldfish采纳,获得30
刚刚
1秒前
科研通AI5应助hahaha采纳,获得10
1秒前
lixiang完成签到,获得积分20
2秒前
5秒前
5秒前
5秒前
爬不起来发布了新的文献求助10
6秒前
楼藏鸟完成签到,获得积分10
7秒前
孔难破发布了新的文献求助10
9秒前
科研通AI5应助江峰采纳,获得10
10秒前
11秒前
124完成签到,获得积分10
12秒前
13秒前
李爱国应助嘻嘻采纳,获得10
13秒前
科研通AI2S应助任性雨筠采纳,获得10
13秒前
14秒前
发发完成签到 ,获得积分10
15秒前
heyheybaby发布了新的文献求助10
17秒前
19秒前
wyl发布了新的文献求助10
20秒前
等待戈多发布了新的文献求助30
20秒前
研友_VZG7GZ应助jiayou采纳,获得10
21秒前
21秒前
23秒前
23秒前
23秒前
嘻嘻发布了新的文献求助10
24秒前
ZiruiDing完成签到 ,获得积分10
25秒前
猴儿完成签到,获得积分20
25秒前
qiulong发布了新的文献求助10
26秒前
康师傅冰红茶完成签到,获得积分10
26秒前
26秒前
27秒前
深情安青应助科研通管家采纳,获得10
27秒前
songyy发布了新的文献求助10
27秒前
我是老大应助科研通管家采纳,获得10
27秒前
完美世界应助科研通管家采纳,获得10
27秒前
香蕉觅云应助科研通管家采纳,获得10
27秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799816
求助须知:如何正确求助?哪些是违规求助? 3345094
关于积分的说明 10323610
捐赠科研通 3061657
什么是DOI,文献DOI怎么找? 1680474
邀请新用户注册赠送积分活动 807093
科研通“疑难数据库(出版商)”最低求助积分说明 763462