Source Extent Estimation in OPM-MEG: A Two-Stage Champagne Approach

阶段(地层学) 估计 计算机科学 人工智能 脑磁图 计算机视觉 脑电图 地质学 工程类 医学 古生物学 系统工程 精神科
作者
Wen Li,Fuzhi Cao,Nan An,Wenli Wang,Chunhui Wang,Weinan Xu,Yang Gao,Xiaolin Ning
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3462415
摘要

The accurate estimation of source extent using magnetoencephalography (MEG) is important for the study of preoperative functional localization in epilepsy. Conventional source imaging techniques tend to produce diffuse or focused source estimates that fail to capture the source extent accurately. To address this issue, we propose a novel method called the two-stage Champagne approach (TS-Champagne). TS-Champagne divides source extent estimation into two stages. In the first stage, the Champagne algorithm with noise learning (Champagne-NL) is employed to obtain an initial source estimate. In the second stage, spatial basis functions are constructed from the initial source estimate. These spatial basis functions consist of potential activation source centers and their neighbors, and serve as spatial priors, which are incorporated into Champagne-NL to obtain a final source estimate. We evaluated the performance of TS-Champagne through numerical simulations. TS-Champagne achieved more robust performance under various conditions (i.e., varying source extent, number of sources, signal-to-noise level, and correlation coefficients between sources) than Champagne-NL and several benchmark methods. Furthermore, auditory and median nerve stimulation experiments were conducted using a 31-channel optically pumped magnetometer (OPM)-MEG system. The validation results indicated that the reconstructed source activity was spatially and temporally consistent with the neurophysiological results of previous OPM-MEG studies, further demonstrating the feasibility of TS-Champagne for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sgt发布了新的文献求助10
1秒前
李健应助彳亍而行采纳,获得10
3秒前
唠叨的甜瓜完成签到,获得积分10
3秒前
哎呦喂喂完成签到,获得积分10
3秒前
racill发布了新的文献求助10
6秒前
8秒前
甜菜完成签到,获得积分10
9秒前
平常小兔子完成签到,获得积分10
11秒前
康阿蛋发布了新的文献求助10
12秒前
康轲完成签到,获得积分10
13秒前
ShawnLyu应助小写采纳,获得10
13秒前
刘雪晴完成签到 ,获得积分10
14秒前
秦时明月199588完成签到,获得积分10
16秒前
16秒前
李君然发布了新的文献求助10
17秒前
SYLH应助哎呦喂喂采纳,获得10
17秒前
17秒前
glassman完成签到,获得积分10
18秒前
Orange应助奋斗的元瑶采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
19秒前
英姑应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
科研通AI5应助等光来采纳,获得30
19秒前
852应助科研通管家采纳,获得10
19秒前
Akim应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
大个应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
glassman发布了新的文献求助10
22秒前
wangdong完成签到,获得积分0
23秒前
小蘑菇应助平淡的77采纳,获得20
23秒前
kevin完成签到,获得积分10
26秒前
晴空万里发布了新的文献求助10
26秒前
actor2006完成签到,获得积分10
28秒前
华仔应助研友_nVWP2Z采纳,获得10
30秒前
30秒前
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800680
求助须知:如何正确求助?哪些是违规求助? 3346007
关于积分的说明 10328247
捐赠科研通 3062514
什么是DOI,文献DOI怎么找? 1681009
邀请新用户注册赠送积分活动 807337
科研通“疑难数据库(出版商)”最低求助积分说明 763627