Model predictive complex system control from observational and interventional data

计算机科学 机器学习 人工智能 观察研究 状态空间 复杂系统 模型预测控制 一般化 分布式计算 数据科学 控制(管理) 数学 数学分析 统计
作者
Muyun Mou,Yu Guo,Fan-Ming Luo,Yang Yu,Jiang Zhang
出处
期刊:Chaos [American Institute of Physics]
卷期号:34 (9) 被引量:1
标识
DOI:10.1063/5.0195208
摘要

Complex systems, characterized by intricate interactions among numerous entities, give rise to emergent behaviors whose data-driven modeling and control are of utmost significance, especially when there is abundant observational data but the intervention cost is high. Traditional methods rely on precise dynamical models or require extensive intervention data, often falling short in real-world applications. To bridge this gap, we consider a specific setting of the complex systems control problem: how to control complex systems through a few online interactions on some intervenable nodes when abundant observational data from natural evolution is available. We introduce a two-stage model predictive complex system control framework, comprising an offline pre-training phase that leverages rich observational data to capture spontaneous evolutionary dynamics and an online fine-tuning phase that uses a variant of model predictive control to implement intervention actions. To address the high-dimensional nature of the state-action space in complex systems, we propose a novel approach employing action-extended graph neural networks to model the Markov decision process of complex systems and design a hierarchical action space for learning intervention actions. This approach performs well in three complex system control environments: Boids, Kuramoto, and Susceptible-Infectious-Susceptible (SIS) metapopulation. It offers accelerated convergence, robust generalization, and reduced intervention costs compared to the baseline algorithm. This work provides valuable insights into controlling complex systems with high-dimensional state-action spaces and limited intervention data, presenting promising applications for real-world challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
海虎爆破拳完成签到,获得积分10
3秒前
4秒前
Akim应助liu采纳,获得10
5秒前
5秒前
飞飞飞完成签到,获得积分10
5秒前
5秒前
山间风发布了新的文献求助10
6秒前
刘刘溜完成签到,获得积分10
7秒前
8秒前
科目三应助心灵美芯采纳,获得10
8秒前
8秒前
充电宝应助张潇潇采纳,获得10
9秒前
sunshine应助海绵宝宝采纳,获得10
9秒前
咦哈哈哈发布了新的文献求助10
9秒前
深情安青应助飞飞飞采纳,获得10
11秒前
13秒前
kewell完成签到,获得积分10
14秒前
烤全鱼呢发布了新的文献求助10
15秒前
15秒前
15秒前
Nancy发布了新的文献求助10
15秒前
16秒前
读个博吧发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
一个搞不懂晶体学的小牛马完成签到,获得积分10
18秒前
18秒前
19秒前
huaxuxu发布了新的文献求助10
20秒前
奈布森森完成签到,获得积分20
20秒前
20秒前
21秒前
HAN关闭了HAN文献求助
21秒前
hgc发布了新的文献求助10
21秒前
bkagyin应助丁丁采纳,获得80
21秒前
大模型应助cj采纳,获得10
22秒前
范同学完成签到,获得积分10
22秒前
23秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840235
求助须知:如何正确求助?哪些是违规求助? 3382393
关于积分的说明 10523553
捐赠科研通 3101930
什么是DOI,文献DOI怎么找? 1708499
邀请新用户注册赠送积分活动 822527
科研通“疑难数据库(出版商)”最低求助积分说明 773346