Predicting protein conformational motions using energetic frustration analysis and AlphaFold2

变构调节 能源景观 计算机科学 分子动力学 蛋白质动力学 人工智能 构象集合 蛋白质结构 物理 机器学习 生物系统 化学 计算化学 生物 热力学 核磁共振
作者
Xingyue Guan,Qian-Yuan Tang,Weitong Ren,Mingchen Chen,Wei Wang,Peter G. Wolynes,Wenfei Li
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (35) 被引量:5
标识
DOI:10.1073/pnas.2410662121
摘要

Proteins perform their biological functions through motion. Although high throughput prediction of the three-dimensional static structures of proteins has proved feasible using deep-learning-based methods, predicting the conformational motions remains a challenge. Purely data-driven machine learning methods encounter difficulty for addressing such motions because available laboratory data on conformational motions are still limited. In this work, we develop a method for generating protein allosteric motions by integrating physical energy landscape information into deep-learning-based methods. We show that local energetic frustration, which represents a quantification of the local features of the energy landscape governing protein allosteric dynamics, can be utilized to empower AlphaFold2 (AF2) to predict protein conformational motions. Starting from ground state static structures, this integrative method generates alternative structures as well as pathways of protein conformational motions, using a progressive enhancement of the energetic frustration features in the input multiple sequence alignment sequences. For a model protein adenylate kinase, we show that the generated conformational motions are consistent with available experimental and molecular dynamics simulation data. Applying the method to another two proteins KaiB and ribose-binding protein, which involve large-amplitude conformational changes, can also successfully generate the alternative conformations. We also show how to extract overall features of the AF2 energy landscape topography, which has been considered by many to be black box. Incorporating physical knowledge into deep-learning-based structure prediction algorithms provides a useful strategy to address the challenges of dynamic structure prediction of allosteric proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洁净山灵完成签到,获得积分10
刚刚
1秒前
CYY发布了新的文献求助10
2秒前
4秒前
唐世军发布了新的文献求助10
7秒前
完美世界应助Ying采纳,获得10
8秒前
111完成签到,获得积分10
10秒前
wangyang完成签到 ,获得积分10
11秒前
11秒前
11秒前
resonliu0827发布了新的文献求助10
14秒前
无花果应助limin采纳,获得30
14秒前
张继妖发布了新的文献求助10
17秒前
乔心发布了新的文献求助10
18秒前
18秒前
木子木完成签到,获得积分10
19秒前
芬芬发布了新的文献求助10
20秒前
resonliu0827完成签到,获得积分10
23秒前
健忘的路人完成签到 ,获得积分10
24秒前
这位同学不知道叫什么好完成签到,获得积分20
25秒前
26秒前
战神林北完成签到,获得积分10
26秒前
Orange应助饭小团采纳,获得10
26秒前
LLL完成签到 ,获得积分10
27秒前
念辞完成签到,获得积分10
27秒前
科研通AI5应助感念采纳,获得10
28秒前
科研通AI5应助木子木采纳,获得10
28秒前
科研通AI5应助张继妖采纳,获得10
33秒前
科研通AI5应助Ytgl采纳,获得10
38秒前
38秒前
41秒前
嘉禾望岗完成签到,获得积分20
42秒前
glacier发布了新的文献求助10
44秒前
感念发布了新的文献求助10
45秒前
50秒前
53秒前
Ying发布了新的文献求助10
54秒前
科研通AI5应助小猫多鱼采纳,获得10
56秒前
木子木发布了新的文献求助10
57秒前
田様应助阿浮采纳,获得10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780337
求助须知:如何正确求助?哪些是违规求助? 3325661
关于积分的说明 10223791
捐赠科研通 3040806
什么是DOI,文献DOI怎么找? 1669006
邀请新用户注册赠送积分活动 798963
科研通“疑难数据库(出版商)”最低求助积分说明 758648