亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting protein conformational motions using energetic frustration analysis and AlphaFold2

变构调节 能源景观 计算机科学 分子动力学 蛋白质动力学 人工智能 构象集合 蛋白质结构 物理 机器学习 生物系统 化学 计算化学 生物 核磁共振 热力学
作者
Xingyue Guan,Qian-Yuan Tang,Weitong Ren,Mingchen Chen,Wei Wang,Peter G. Wolynes,Wenfei Li
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (35): e2410662121-e2410662121 被引量:24
标识
DOI:10.1073/pnas.2410662121
摘要

Proteins perform their biological functions through motion. Although high throughput prediction of the three-dimensional static structures of proteins has proved feasible using deep-learning-based methods, predicting the conformational motions remains a challenge. Purely data-driven machine learning methods encounter difficulty for addressing such motions because available laboratory data on conformational motions are still limited. In this work, we develop a method for generating protein allosteric motions by integrating physical energy landscape information into deep-learning-based methods. We show that local energetic frustration, which represents a quantification of the local features of the energy landscape governing protein allosteric dynamics, can be utilized to empower AlphaFold2 (AF2) to predict protein conformational motions. Starting from ground state static structures, this integrative method generates alternative structures as well as pathways of protein conformational motions, using a progressive enhancement of the energetic frustration features in the input multiple sequence alignment sequences. For a model protein adenylate kinase, we show that the generated conformational motions are consistent with available experimental and molecular dynamics simulation data. Applying the method to another two proteins KaiB and ribose-binding protein, which involve large-amplitude conformational changes, can also successfully generate the alternative conformations. We also show how to extract overall features of the AF2 energy landscape topography, which has been considered by many to be black box. Incorporating physical knowledge into deep-learning-based structure prediction algorithms provides a useful strategy to address the challenges of dynamic structure prediction of allosteric proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
化爷发布了新的文献求助10
16秒前
科研通AI5应助科研通管家采纳,获得30
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
yux完成签到,获得积分10
18秒前
44秒前
sandwich完成签到 ,获得积分10
51秒前
51秒前
无花果应助化爷采纳,获得10
52秒前
jyy发布了新的文献求助10
59秒前
bji完成签到,获得积分10
1分钟前
1分钟前
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
zxcvvbb1001完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
小蘑菇应助wang采纳,获得10
4分钟前
从容芮应助Marciu33采纳,获得30
4分钟前
5分钟前
袁钰琳完成签到 ,获得积分10
5分钟前
共享精神应助唯伊采纳,获得10
5分钟前
5分钟前
唯伊发布了新的文献求助10
5分钟前
喜悦的香之完成签到 ,获得积分10
5分钟前
5分钟前
wang发布了新的文献求助10
5分钟前
5分钟前
5分钟前
科研通AI5应助wang采纳,获得10
5分钟前
5分钟前
心想事成完成签到 ,获得积分10
5分钟前
chfvHJSNK发布了新的文献求助10
5分钟前
6分钟前
无聊的寒香完成签到,获得积分10
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5174117
求助须知:如何正确求助?哪些是违规求助? 4363720
关于积分的说明 13585812
捐赠科研通 4212364
什么是DOI,文献DOI怎么找? 2310447
邀请新用户注册赠送积分活动 1309494
关于科研通互助平台的介绍 1257013