Implementation and verification of an OpenFOAM solver for gas-droplet two-phase detonation combustion

物理 起爆 解算器 燃烧 气相 机械 两相流 计算流体力学 航空航天工程 核工程 热力学 流量(数学) 爆炸物 物理化学 计算机科学 化学 有机化学 工程类 程序设计语言
作者
Huangwei Chen,Minghao Zhao,Hua Qiu,Yuejin Zhu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (8)
标识
DOI:10.1063/5.0221308
摘要

Due to the complexity and short timescale of detonation, it is usually difficult to capture its transient characteristics experimentally. Advanced numerical methods are essential for enhancing the understanding of the flow field structure and combustion mechanism of detonation. In this study, a density-based compressible reactive flow solver called CDSFoam is developed for simulating gas-droplet two-phase detonation combustion based on OpenFOAM. The primary feature of this solver is its implementation of two-way coupling between gas and liquid phases, utilizing the Eulerian–Lagrangian method. The key enhancement is an improved approximate Riemann solver used to solve the convective flux, reducing dissipation while ensuring robustness. Time integration is achieved through the third-order strong stability preserving Runge–Kutta method. Additionally, CDSFoam incorporates dynamic load balancing and adaptive mesh refinement techniques to mitigate computational costs while achieving high-resolution flow fields dynamically. To validate the reliability and accuracy of the solver, a series of benchmark cases are examined, including the multi-component inert and reactive shock tube, the stable diffusion process, the Riemann problem, the one-dimensional detonation, the two-dimensional detonation and oblique detonation, the droplet phase model, the two-dimensional gas–liquid two-phase detonation, and the two-phase rotating detonation. The results show that CDSFoam can well predict the shock wave discontinuity, shock wave induced ignition, molecular diffusion, detonation key parameters, detonation cell size, and the main characteristics of gas–liquid two-phase detonation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
immm完成签到,获得积分10
2秒前
3秒前
小李发布了新的文献求助10
4秒前
张歆雨发布了新的文献求助10
6秒前
锂离子完成签到,获得积分10
6秒前
珍珠闹海完成签到,获得积分10
7秒前
三十七度小火炉完成签到,获得积分10
9秒前
9秒前
9秒前
珍珠闹海发布了新的文献求助10
9秒前
10秒前
11秒前
乌苏完成签到 ,获得积分10
12秒前
独白发布了新的文献求助10
12秒前
12秒前
12秒前
superLmy完成签到 ,获得积分10
13秒前
15秒前
prim发布了新的文献求助30
16秒前
little black发布了新的文献求助10
17秒前
祁依欧欧完成签到,获得积分10
18秒前
猪猪hero发布了新的文献求助10
18秒前
sq完成签到 ,获得积分10
18秒前
CHENXIN532完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
coldspringhao完成签到,获得积分10
20秒前
21秒前
小个白完成签到,获得积分10
22秒前
23秒前
DYH发布了新的文献求助10
24秒前
蒋不惜完成签到,获得积分10
25秒前
小超完成签到,获得积分10
26秒前
雾野发布了新的文献求助10
26秒前
taster发布了新的文献求助10
26秒前
27秒前
星辰发布了新的文献求助10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776240
求助须知:如何正确求助?哪些是违规求助? 3321725
关于积分的说明 10207338
捐赠科研通 3036979
什么是DOI,文献DOI怎么找? 1666499
邀请新用户注册赠送积分活动 797502
科研通“疑难数据库(出版商)”最低求助积分说明 757868