Insights into modern machine learning approaches for bearing fault classification: A systematic literature review

计算机科学 机器学习 人工智能 领域(数学) 卷积神经网络 人工神经网络 多样性(控制论) 方位(导航) 深度学习 断层(地质) 数据科学 数学 纯数学 地震学 地质学
作者
Afzal Ahmed Soomro,Masdi Muhammad,Ainul Akmar Mokhtar,Mohamad Hanif Md Saad,Najeebullah Lashari,Muhammad Nihal Hussain,Umair Sarwar,Abdul Sattar Palli
出处
期刊:Results in engineering [Elsevier BV]
卷期号:23: 102700-102700 被引量:35
标识
DOI:10.1016/j.rineng.2024.102700
摘要

Rolling bearings are essential components in a wide range of equipment, such as aeroplanes, trains, and wind turbines. Bearing failure has the potential to result in complete system failure, and it accounts for approximately 45 %–50 % of failures in rotating machinery. Hence, it is imperative to establish a thorough and accurate predictive maintenance program that can efficiently foresee and prevent mishaps or malfunctions. The literature has employed a variety of techniques and approaches, from conventional methods to contemporary machine learning (ML) and ML-integrated IoT-based solutions, to categorise bearing faults. This article provides an overview of the most recent research and models used in the classification of bearing faults. The literature summary highlights various significant challenges in current models, such as issues with the classification function, complexities in the neural network structure, unrealistic datasets, dynamic working conditions of rotating machines, noise in the dataset, limited data availability, and imbalanced datasets. In order to tackle the problems, researchers have endeavored to improve and apply different methods, such as convolutional neural networks, deep belief neural networks, and LiNet, among others. Researchers have primarily developed these approaches using datasets from publicly accessible sources. This study also identified research gaps and deficiencies, including limited data availability, data imbalance, and difficulties in data integration. The nascent technologies in the field of problem diagnosis and predictive maintenance are acknowledged as Internet of Things-based ML and vision-based deep learning techniques, which are currently in their initial phases of advancement. Ultimately, the study puts forth several prospective suggestions and recommendations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
尊敬的囧发布了新的文献求助10
1秒前
2秒前
2秒前
淡然的萝应助pyyyyyy采纳,获得10
3秒前
wanci应助达达采纳,获得10
3秒前
懒回顾完成签到,获得积分10
5秒前
香蕉觅云应助荔枝采纳,获得10
5秒前
Akim应助无敌龙傲天采纳,获得10
6秒前
ZZM发布了新的文献求助10
7秒前
7秒前
迷路白曼发布了新的文献求助10
8秒前
ChaiN发布了新的文献求助10
8秒前
结实盼烟完成签到,获得积分10
8秒前
迷路白曼发布了新的文献求助10
8秒前
微信研友完成签到,获得积分10
9秒前
李爱国应助懒得可爱采纳,获得10
9秒前
9秒前
英姑应助vickeylea采纳,获得10
10秒前
11秒前
11秒前
Willy完成签到,获得积分10
12秒前
迷路白曼发布了新的文献求助10
12秒前
13秒前
ayuan完成签到,获得积分10
14秒前
ChaiN完成签到,获得积分10
14秒前
诗蕊发布了新的文献求助10
14秒前
14秒前
邓彩姚完成签到,获得积分10
14秒前
Owen应助ZYC007采纳,获得10
15秒前
16秒前
16秒前
动听的琴完成签到,获得积分10
16秒前
16秒前
17秒前
yangxiaomei发布了新的文献求助10
17秒前
Aom完成签到,获得积分10
17秒前
19秒前
十有五应助ali采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4495883
求助须知:如何正确求助?哪些是违规求助? 3947764
关于积分的说明 12240949
捐赠科研通 3605432
什么是DOI,文献DOI怎么找? 1983178
邀请新用户注册赠送积分活动 1019797
科研通“疑难数据库(出版商)”最低求助积分说明 912314