Machine learning algorithms for predicting glioma patient prognosis based on CD163+FPR3+ macrophage signature

签名(拓扑) 川地163 计算机科学 胶质瘤 人工智能 巨噬细胞 算法 机器学习 医学 数学 癌症研究 生物 生物化学 几何学 体外
作者
Quanwei Zhou,Xuejun Yan,Youwei Guo,Xingjun Jiang,Tuo Cao,Yiquan Ke
出处
期刊:npj precision oncology [Nature Portfolio]
卷期号:8 (1)
标识
DOI:10.1038/s41698-024-00692-w
摘要

Tumor-associated macrophages (TAMs) play a vital role in glioma progression and are associated with poor outcomes in glioma patients. However, the specific roles of different subpopulations of TAMs remain poorly understood. Two distinct cell types, glioma and myeloid cells, were identified through single-cell sequencing analysis in gliomas. Within the TAMs-associated weighted gene co-expression network analysis (WGCNA) module, FPR3 emerged as a hub gene and was found to be expressed on CD163+ macrophages, while also being associated with clinical outcomes. Subsequently, a comprehensive assessment was undertaken to investigate the correlation between FPR3 expression and immune characteristics, revealing that FPR3 potentially plays a role in reshaping the glioma microenvironment. We identified a macrophage subset with the nonzero expression of CD163 and FPR3 (CD163+FPR3+). Using the expression profiles of CD163+FPR3+ macrophage-related signature, we employed ten machine learning algorithms to construct a prognostic model across six glioma cohorts. Subsequently, we employed an optimal algorithm to generate an artificial intelligence-driven prognostic signature specifically for CD163+FPR3+ macrophages. The development of this model was based on the average C-index observed in the aforementioned six cohorts. The risk score of this model consistently and effectively predicted overall survival, surpassing the accuracy of conventional clinical factors and 100 previously published signatures. Consequently, the CD163+FPR3+ macrophage-related score shows potential as a prognostic biomarker for glioma patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助先锋老刘001采纳,获得10
1秒前
传奇3应助lindalin采纳,获得10
1秒前
板烧猫腿堡完成签到,获得积分10
1秒前
康轲完成签到,获得积分10
2秒前
2秒前
夜枫完成签到 ,获得积分10
2秒前
爆米花应助xuan采纳,获得10
2秒前
沐熙发布了新的文献求助10
6秒前
丢丢完成签到,获得积分10
6秒前
6秒前
7秒前
研友_VZG7GZ应助yabocai采纳,获得10
8秒前
10秒前
无语的安白应助郭璠采纳,获得10
10秒前
钟ZJ完成签到,获得积分10
10秒前
11秒前
storage发布了新的文献求助10
12秒前
轻风完成签到,获得积分10
13秒前
13秒前
Wxx发布了新的文献求助30
14秒前
学术渣渣发布了新的文献求助10
15秒前
16秒前
现代的芹完成签到 ,获得积分10
17秒前
小Q完成签到 ,获得积分20
17秒前
独家双层汉堡完成签到,获得积分10
18秒前
19秒前
20秒前
20秒前
郭璠完成签到,获得积分10
21秒前
22秒前
Zhi_S完成签到,获得积分20
23秒前
情木花肆发布了新的文献求助10
24秒前
zj完成签到,获得积分10
24秒前
呱呱完成签到,获得积分10
25秒前
25秒前
木子李发布了新的文献求助10
25秒前
随心发布了新的文献求助10
26秒前
852应助周em12_采纳,获得10
26秒前
牛铁锤发布了新的文献求助10
27秒前
jjy完成签到 ,获得积分10
27秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846501
求助须知:如何正确求助?哪些是违规求助? 3388981
关于积分的说明 10555297
捐赠科研通 3109436
什么是DOI,文献DOI怎么找? 1713719
邀请新用户注册赠送积分活动 824868
科研通“疑难数据库(出版商)”最低求助积分说明 775101