Facile Synthesis of Oxygen-Doped g-C3N4 Mesoporous Nanosheets for Significant Enhancement of Photocatalytic Hydrogen Evolution Performance

光催化 材料科学 介孔材料 纳米片 兴奋剂 制氢 化学工程 比表面积 催化作用 吸附 纳米技术 化学 有机化学 光电子学 工程类
作者
Tiekun Jia,Jingjing Li,Zhao Deng,Dongsheng Yu,Joong Hee Lee
出处
期刊:Materials [Multidisciplinary Digital Publishing Institute]
卷期号:17 (13): 3345-3345 被引量:6
标识
DOI:10.3390/ma17133345
摘要

In this work, oxygen-doped g-C3N4 mesoporous nanosheets (O-CNS) were synthesized via a facile recrystallization method with the assistance of H2O2. The crystal phase, chemical composition, morphological structure, optical property, electronic structure and electrochemical property of the prepared O-CNS samples were well investigated. The morphological observation combined with the nitrogen adsorption–desorption results demonstrated that the prepared O-CNS samples possessed nanosheet-like morphology with a porous structure. Doping O into g-C3N4 resulted in the augmentation of the specific surface area, which could provide more active sites for photocatalytic reactions. Simultaneously, the visible light absorption capacity of O-CNS samples was boosted owing to the regulation of O doping. The built energy level induced by the O doping could accelerate the migration rate of photoinduced carriers, and the porous structure was most likely to speed up the release of hydrogen during the photocatalytic hydrogen process. Resultantly, the photocatalytic hydrogen production rate of the optimized oxygen-doped g-C3N4 nanosheets reached up to 2012.9 μmol·h−1·g−1, which was 13.4 times higher than that of bulk g-C3N4. Thus, the significantly improved photocatalytic behavior was imputed to the synergistic effect of the porous structure, the increase in active sites, and the enhancement of visible light absorption and charge separation efficiency. Our research highlights that the synergistic effect caused by element doping will make a great contribution to the remarkable improvement in photocatalytic activity, providing a new inspiration for the construction of novel catalysts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一指墨发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
CipherSage应助min采纳,获得10
4秒前
Ava应助二号采纳,获得10
4秒前
ZhangDaying完成签到 ,获得积分10
5秒前
5秒前
HY完成签到 ,获得积分10
6秒前
123发布了新的文献求助10
6秒前
6秒前
光纤陀螺完成签到,获得积分10
7秒前
胡言发布了新的文献求助10
7秒前
7秒前
berron完成签到,获得积分10
8秒前
8秒前
snow发布了新的文献求助10
9秒前
9秒前
达达尼尔发布了新的文献求助30
9秒前
刘芬完成签到,获得积分10
9秒前
研友_Ze2k48发布了新的文献求助10
10秒前
任伟超发布了新的文献求助10
11秒前
可爱的函函应助berron采纳,获得10
12秒前
gp_liu完成签到,获得积分10
13秒前
lily完成签到,获得积分10
13秒前
等等发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
嗡嗡完成签到,获得积分10
14秒前
14秒前
yyy完成签到,获得积分10
15秒前
16秒前
17秒前
CipherSage应助邱梦采纳,获得10
17秒前
present完成签到,获得积分20
18秒前
尕辉完成签到,获得积分10
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4233414
求助须知:如何正确求助?哪些是违规求助? 3766876
关于积分的说明 11835344
捐赠科研通 3425198
什么是DOI,文献DOI怎么找? 1879742
邀请新用户注册赠送积分活动 932497
科研通“疑难数据库(出版商)”最低求助积分说明 839688