Engine remaining useful life prediction model based on R-Vine copula with multi-sensor data

预言 连接词(语言学) 藤蔓copula 数据挖掘 非线性系统 降级(电信) 计算机科学 过程(计算) 维纳过程 工程类 可靠性工程 人工智能 机器学习 电子工程 多元统计 数学 统计 物理 量子力学 计量经济学 操作系统
作者
Sujuan Liu,Han Jiang
出处
期刊:Heliyon [Elsevier]
卷期号:9 (6): e17118-e17118 被引量:9
标识
DOI:10.1016/j.heliyon.2023.e17118
摘要

Aeroengine is a highly complex and precise mechanical system. As the heart of an aircraft, it has a crucial impact on the overall life of the aircraft. Engine degradation process is caused by multiple factors, so multi-sensor signals are used for condition monitoring and prognostics of engine performance degradation. Compared with the single sensor signal, the multi-sensor signals can more comprehensively contain the degradation information of the engine and achieve higher prediction accuracy of the remaining useful life (RUL). Therefore, a new method for predicting the RUL of an engine based on R-Vine Copula under multi-sensor data is proposed. Firstly, aiming at the phenomenon that the engine performance parameters change over time, and the performance degradation presents nonlinear characteristics, the nonlinear Wiener process is used to model the degradation process of a single degradation signal. Secondly, the model parameters are estimated in the offline stage to integrate the historical data to obtain the offline parameters of the model. In the online stage, when the real-time data is obtained, the Bayesian method is used to update the model parameters. Then, the R-Vine Copula is used to model the correlation between multi-sensor degradation signals to realize online prediction of the remaining useful life of the engine. Finally, the C-MAPSS dataset is selected to verify the effectiveness of the proposed method. The experimental results show that the proposed method can effectively improve prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Fi9zero完成签到,获得积分10
4秒前
Woo_SH发布了新的文献求助10
4秒前
shuide发布了新的文献求助10
5秒前
酷酷的数据线完成签到,获得积分10
6秒前
酷雅的小跟班完成签到,获得积分10
7秒前
Hosea完成签到 ,获得积分10
9秒前
风中的天空完成签到,获得积分10
11秒前
12秒前
青春奇谈完成签到,获得积分10
17秒前
18秒前
21秒前
青春奇谈发布了新的文献求助10
22秒前
24秒前
吴宵完成签到,获得积分0
27秒前
27秒前
黄汉良完成签到,获得积分10
28秒前
Owen应助zhscu采纳,获得10
29秒前
田様应助我要做科研狗采纳,获得10
30秒前
无语的问雁完成签到,获得积分10
32秒前
33秒前
34秒前
彭于晏应助别说话采纳,获得30
35秒前
CipherSage应助haoran采纳,获得10
36秒前
协和_子鱼发布了新的文献求助10
38秒前
38秒前
39秒前
39秒前
花遇和风完成签到 ,获得积分10
40秒前
Focus_BG完成签到,获得积分10
41秒前
mengjianfen发布了新的文献求助10
43秒前
43秒前
zhscu发布了新的文献求助10
44秒前
大模型应助猪猪hero采纳,获得10
44秒前
BowieHuang应助nono采纳,获得10
47秒前
48秒前
48秒前
51秒前
53秒前
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558025
求助须知:如何正确求助?哪些是违规求助? 4642970
关于积分的说明 14670108
捐赠科研通 4584465
什么是DOI,文献DOI怎么找? 2514893
邀请新用户注册赠送积分活动 1489009
关于科研通互助平台的介绍 1459631