A Data-Driven Tip Flow Loss Prediction Method for a Transonic Fan Under Boundary Layer Ingesting Inflow Distortion

空气动力学 失真(音乐) 流入 计算流体力学 边界层 计算机科学 机身 工程类 航空航天工程 模拟 海洋工程 结构工程 机械 物理 电子工程 CMOS芯片 放大器
作者
Zhe Yang,Hanan Lu,Tianyu Pan,Qiushi Li
出处
期刊:Journal of turbomachinery [ASM International]
卷期号:145 (1) 被引量:8
标识
DOI:10.1115/1.4055439
摘要

Abstract In a boundary layer ingesting (BLI) propulsion system, the fan blades need to operate continuously under large-scale inflow distortion. The distortion will lead to serious aerodynamic losses in the fan, degrading the fan performance and the overall aerodynamic benefits of the aircraft. Therefore, in the preliminary design of a BLI propulsion system, it is necessary to evaluate the influence of the fuselage boundary layer under different flight conditions on the fan aerodynamic performance. However, a gap exists in the current computational methods for BLI fan performance evaluations. The full-annulus unsteady Reynolds-averaged Navier–Stokes (URANS) simulations can provide reliable predictions but are computationally expensive for design iterations. The low-order computational methods are cost-efficient but rely on the loss models for accurate prediction. The conventional empirical or physics-based loss models show notable limitations under complex distortion-induced off-design working conditions in a BLI fan, especially in the rotor tip region, compromising the reliability of the low-order computational methods. To balance the accuracy and cost of loss prediction, the paper proposes a data-driven tip flow loss prediction framework for a BLI fan. It employs a neural network to build a surrogate model to predict the tip flow loss at complex non-uniform aerodynamic conditions. Physical understandings of the flow features in the BLI fan are integrated into the data-driven modeling process, to further reduce the computational cost and improve the method’s applicability. The data-driven prediction method shows good accuracy in predicting the overall values and radial distributions of fan rotor tip flow loss under various BLI inflow distortion conditions. Not only does it have higher accuracy than the conventional physics-based loss models but also needs much less computational time than the full-annulus time-accurate simulations. The present work has demonstrated a significant potential of data-driven approaches in complex aerodynamic loss modeling and will contribute to future BLI fan design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hzlong发布了新的文献求助10
1秒前
Ava应助樱坠梨殆采纳,获得10
2秒前
乐乐应助科研小菜鸟采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
研友_VZG7GZ应助童紫槐采纳,获得10
5秒前
5秒前
斯文的访烟完成签到,获得积分10
5秒前
6秒前
8秒前
9秒前
soilbeginner发布了新的文献求助30
10秒前
科研通AI5应助不甜的唐采纳,获得10
10秒前
wanci应助大胆次位子采纳,获得10
10秒前
10秒前
11秒前
李小聪发布了新的文献求助10
12秒前
昏睡的蟠桃应助不敢装睡采纳,获得200
13秒前
可爱非笑发布了新的文献求助10
13秒前
摩登灰太狼完成签到,获得积分10
14秒前
lull发布了新的文献求助30
15秒前
15秒前
研友_X894JZ完成签到 ,获得积分10
16秒前
17秒前
AA发布了新的文献求助30
17秒前
JamesPei应助可爱非笑采纳,获得10
18秒前
19秒前
科研通AI5应助lull采纳,获得10
19秒前
炙热盼兰完成签到,获得积分10
20秒前
李健的小迷弟应助YW采纳,获得10
20秒前
21秒前
zzzzz完成签到,获得积分20
22秒前
23秒前
cctv18应助xzzt采纳,获得10
23秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
不甜的唐发布了新的文献求助10
28秒前
30秒前
YW完成签到,获得积分10
30秒前
weing发布了新的文献求助10
30秒前
30秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864806
求助须知:如何正确求助?哪些是违规求助? 3407269
关于积分的说明 10653427
捐赠科研通 3131319
什么是DOI,文献DOI怎么找? 1726922
邀请新用户注册赠送积分活动 832100
科研通“疑难数据库(出版商)”最低求助积分说明 780127