废水
膜
电镀
化学
基质(化学分析)
环境科学
环境化学
废物管理
环境工程
色谱法
有机化学
生物化学
工程类
图层(电子)
作者
Imran Ali,Peng Wan,Saleem Raza,Changsheng Peng,Xiao Tan,Huibin Sun,Juying Li
标识
DOI:10.1016/j.envres.2022.113945
摘要
The stability and applicability of UiO-66-(NH2)2 metal-organic framework (MOF) nanoparticles (NPs) were successfully improved in this study by incorporating them into alginate biopolymer during the manifestation of crosslinking agents-calcium chloride and glutaraldehyde-via a simple, environment-friendly, and facile approach to eradicate potentially toxic metals (PTMs) such as Cr6+, Cr3+, Cu2+, and Cd2+ from water and real electroplating wastewater. Hydrophilic functional groups (i.e., -OH, -COOH, and -NH2) are imperative in the smooth loading of UiO-66-(NH2)2 MOF- NPs into three-dimensional (3-D) membrane capsules (MCs). The X-ray photoelectron spectroscopy (XPS) results suggested that UiO-66-(NH2)2 MOF was effectively bonded in/on the capsule via electrostatic crosslinking between -H3N+ and -COO-. Scanning electron microscopy results revealed a porous honeycomb configuration of the 3-D SGMMCs (S: sodium alginate, G: glutaraldehyde, M: MOF NPs, and MCs: membrane capsules). The maximum monolayer absorption capacities for Cr6+, Cr3+, Cu2+, and Cd2+ were 495, 975, 1295, and 1350 mg/g, respectively. The results of Fourier transform infrared spectroscopy and XPS analyses showed that electrostatic attraction and ion exchange were the main processes for PTM removal used by the as-developed 3-D SGMMCs. The as-developed 3-D SGMMCs exhibited outstanding selectivity for removing the targeted PTMs under the specified pH/conditions and maintained >80% removal efficiency for up to six consecutive treatment cycles. Notably, > 60% removal efficiencies for Cr6+ and Cu2+ were observed when treating real electroplating wastewater. Therefore, the as-developed 3-D SGMMCs can be used as an exceptional multifunctional sorbent to remove and recover PTMs from real electroplating wastewater.
科研通智能强力驱动
Strongly Powered by AbleSci AI