GhostConv+CA-YOLOv8n: a lightweight network for rice pest detection based on the aggregation of low-level features in real-world complex backgrounds

最小边界框 计算机科学 背景(考古学) 特征(语言学) 人工智能 水准点(测量) 骨干网 模式识别(心理学) 跳跃式监视 代表(政治) 领域(数学) 特征学习 精确性和召回率 机器学习 数学 纯数学 法学 地理 图像(数学) 古生物学 哲学 政治 生物 语言学 计算机网络 政治学 大地测量学
作者
Fei Li,Yang Lu,Qiang Ma,Shuxin Yin,Rui Zhao
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:16: 1620339-1620339 被引量:1
标识
DOI:10.3389/fpls.2025.1620339
摘要

Deep learning models for rice pest detection often face performance degradation in real-world field environments due to complex backgrounds and limited computational resources. Existing approaches suffer from two critical limitations: (1) inadequate feature representation under occlusion and scale variations, and (2) excessive computational costs for edge deployment. To overcome these limitations, this paper introduces GhostConv+CA-YOLOv8n, a lightweight object detection framework was proposed, which incorporates several innovative features: GhostConv replaces standard convolutional operations with computationally efficient ghost modules in the YOLOv8n’s backbone structure, reducing parameters by 40,458 while maintaining feature richness; a Context Aggregation (CA) module is applied after the large and medium-sized feature maps were output by the YOLOv8n’s neck structure. This module enhance low-level feature representation by fusing global and local context, which is particularly effective for detecting occluded pests in complex environments; Shape-IoU, which improves bounding box regression by accounting for target morphology, and Slide Loss, which addresses class imbalance by dynamically adjusting sample weighting during training were employed. Comprehensive evaluations on the Ricepest15 dataset, GhostConv+CA-YOLOv8n achieves 89.959% precision and 82.258% recall with improvements of 3.657% and 11.59%, and the model parameter reduced 1.34%, over the YOLOv8n baseline while maintaining a high mAP (94.527% vs. 84.994% baseline). Furthermore, the model shows strong generalization, achieving a 4.49%, 5.452%, and 3.407% improvement in F1-score, precision, and recall on the IP102 benchmark. This study bridges the gap between accuracy and efficiency for in field pest detection, providing a practical solution for real-time rice monitoring in smart agriculture systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
情怀应助精明的忆灵采纳,获得10
1秒前
豆西豆完成签到,获得积分10
1秒前
体贴的寒梅完成签到 ,获得积分10
1秒前
S1mple完成签到,获得积分10
2秒前
2秒前
标致冬日发布了新的文献求助30
2秒前
2秒前
铭心完成签到,获得积分10
3秒前
Murphy发布了新的文献求助10
4秒前
小萌新完成签到,获得积分10
6秒前
梦里花落声应助俞晓采纳,获得10
6秒前
长孙文博发布了新的文献求助10
6秒前
hyw010724发布了新的文献求助10
6秒前
科研通AI6应助可爱邓邓采纳,获得10
7秒前
7秒前
HLQF完成签到,获得积分10
7秒前
8秒前
精明的忆灵完成签到,获得积分10
8秒前
ACE完成签到,获得积分10
9秒前
软曲奇完成签到,获得积分10
10秒前
10秒前
收容成功完成签到,获得积分10
11秒前
13秒前
小鱼儿完成签到,获得积分10
13秒前
赘婿应助烤了那只蠢鸡采纳,获得10
14秒前
14秒前
16秒前
pluto应助zhangshun采纳,获得10
16秒前
17秒前
郭素玲完成签到,获得积分10
17秒前
Cynthia完成签到,获得积分10
18秒前
整齐的涵蕾完成签到,获得积分20
20秒前
牛经理完成签到,获得积分10
20秒前
北执完成签到,获得积分10
20秒前
21秒前
22秒前
22秒前
李爱国应助白羊颈复康采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5317648
求助须知:如何正确求助?哪些是违规求助? 4460126
关于积分的说明 13877368
捐赠科研通 4350368
什么是DOI,文献DOI怎么找? 2389368
邀请新用户注册赠送积分活动 1383539
关于科研通互助平台的介绍 1352917