亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of coal permeability evolution under true triaxial stress conditions based on optimized deep learning algorithms

物理 磁导率 算法 机械 计算机科学 遗传学 生物
作者
Zhaoyang Gong,Dongming Zhang,Chongyang Wang,Beichen Yu,Linxiong Chen
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (7)
标识
DOI:10.1063/5.0278980
摘要

Coal seam permeability is significantly influenced by tectonic and mining-induced stresses. Accurate permeability prediction is therefore crucial for ensuring safe gas extraction, efficient CO2 sequestration, and effective unconventional energy development. However, traditional permeability models have notable limitations: exponential models typically exhibit substantial errors under complex stress conditions, while purely data-driven models lack physical interpretability and are highly sensitive to sample size. In this study, a stress–permeability database was established based on true triaxial seepage experiments conducted on coal samples. Two advanced predictive approaches—an optimized genetic programming (GP) method and physics-informed neural networks (PINNs)—were proposed and developed. For the optimized GP algorithm, the introduction of dynamic complexity penalties and multi-threaded parallel evaluations significantly mitigated code bloat, enhancing computational efficiency by approximately 23% and markedly improving prediction accuracy (with evaluation metric a20 exceeding 0.9). The PINNs approach incorporated Darcy's law and permeability equations into the neural network by explicitly formulating Darcy residuals and elastic model residuals. Adaptive weighting was employed to balance data-driven errors and physics-based residuals, enabling simultaneous convergence of both residual types. Ultimately, the model reached a balanced state between data loss and physics loss, achieving an exceptional prediction accuracy with an R2 value greater than 0.99. A comprehensive comparative assessment revealed that PINNs delivered the highest predictive accuracy, while the optimized GP algorithm provided superior computational efficiency. Both approaches represent effective alternatives to traditional permeability models, offering efficient solutions for permeability prediction in engineering practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
zhanzhi完成签到,获得积分10
20秒前
俭朴蜜蜂完成签到 ,获得积分10
37秒前
45秒前
48秒前
49秒前
NexusExplorer应助AIO采纳,获得10
53秒前
索多倍发布了新的文献求助10
54秒前
九号球完成签到,获得积分10
58秒前
索多倍完成签到,获得积分10
58秒前
1分钟前
AIO发布了新的文献求助10
1分钟前
钱小豪应助wang采纳,获得20
1分钟前
AIO完成签到,获得积分10
1分钟前
冬瓜完成签到 ,获得积分10
1分钟前
如约而至完成签到 ,获得积分10
1分钟前
1分钟前
hakuna_matata完成签到 ,获得积分0
2分钟前
Sunny完成签到 ,获得积分10
2分钟前
2分钟前
无花果应助gomoss采纳,获得10
2分钟前
2分钟前
nilending发布了新的文献求助10
3分钟前
ding应助尊敬的芷卉采纳,获得10
3分钟前
3分钟前
小马甲应助nilending采纳,获得10
3分钟前
3分钟前
3分钟前
打打应助尊敬的芷卉采纳,获得10
3分钟前
nilending完成签到,获得积分10
3分钟前
明理夜山发布了新的文献求助30
3分钟前
JSEILWQ完成签到 ,获得积分10
3分钟前
3分钟前
CipherSage应助神啊救救我吧采纳,获得10
3分钟前
科研通AI5应助明理夜山采纳,获得10
3分钟前
HZQ应助kbrxing采纳,获得10
3分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4124246
求助须知:如何正确求助?哪些是违规求助? 3662125
关于积分的说明 11590291
捐赠科研通 3362559
什么是DOI,文献DOI怎么找? 1847636
邀请新用户注册赠送积分活动 912036
科研通“疑难数据库(出版商)”最低求助积分说明 827838