ME 2 FNet: Muti-level Edge-Enhanced Fusion Network for Camouflaged Object Detection

GSM演进的增强数据速率 融合 计算机科学 对象(语法) 人工智能 计算机视觉 语言学 哲学
作者
Xiaohua Tong,Guangjian Zhang,Yuhao Yang
标识
DOI:10.1177/30504554251351219
摘要

Camouflaged object detection (COD) is an emerging research direction in computer vision in recent years, aiming to segment objects that are visually integrated with the background, which is a valuable task and has attracted increasing interest from researchers. Since camouflaged objects are integrated with their surroundings, their boundaries are also very blurred, and it becomes an important issue in COD to segment the edges of the objects accurately and completely. To address the above issues, in this article, we propose a novel multi-level edge-enhanced fusion for camouflaged object detection network (ME 2 FNet). Specifically, we design a residual texture enhanced module to obtain more refined features from the noise-filled backbone features. Then, we design an edge extraction module (EEM), which aims to extract effective edge semantic information from low-level features and high-level features by a simple local channel attention mechanism. Finally, we design a boundary-guided fusion module, which aims to fuse the previously obtained prior information. It can fuse the edge information extracted by EEM with the features at different levels of the backbone network, and guide the learning under the supervision of ground truth. At the same time, it fuses the high-level global information with the features at different levels, so that the final predicted edge is clearer and the overall structure is more complete. Extensive experiments on three challenging benchmark datasets have shown that ME 2 FNet outperforms multiple leading-edge models in recent years and achieves advanced results under four widely used evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wlscj应助执手听风吟采纳,获得20
1秒前
屈屈完成签到,获得积分20
1秒前
纪复天发布了新的文献求助10
1秒前
852应助个性尔槐采纳,获得10
1秒前
打打应助qwerdf采纳,获得10
2秒前
浮游应助G.Huang采纳,获得10
3秒前
李健应助ykq采纳,获得10
4秒前
4秒前
屈屈发布了新的文献求助100
5秒前
英姑应助liuhj采纳,获得10
5秒前
南木完成签到,获得积分20
5秒前
5秒前
5秒前
耳喃完成签到 ,获得积分10
6秒前
领导范儿应助活泼火龙果采纳,获得20
8秒前
8秒前
英俊的铭应助黄金正脸采纳,获得10
8秒前
8R60d8应助刘liu采纳,获得10
9秒前
sweet完成签到,获得积分10
10秒前
10秒前
11秒前
纪复天完成签到,获得积分10
12秒前
1111完成签到,获得积分10
12秒前
瓜瓜发布了新的文献求助10
13秒前
羽木啊完成签到,获得积分10
14秒前
哈基米德举报joey求助涉嫌违规
14秒前
Asa发布了新的文献求助10
14秒前
深情安青应助YiWei采纳,获得10
15秒前
15秒前
15秒前
个性尔槐发布了新的文献求助10
15秒前
Aliya完成签到 ,获得积分10
16秒前
一天发布了新的文献求助10
16秒前
今后应助kaka7采纳,获得10
17秒前
NexusExplorer应助文静的柠檬采纳,获得10
19秒前
嗯嗯完成签到,获得积分10
19秒前
19秒前
20秒前
liuhj发布了新的文献求助10
20秒前
忐忑的草丛完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307496
求助须知:如何正确求助?哪些是违规求助? 4453092
关于积分的说明 13856033
捐赠科研通 4340658
什么是DOI,文献DOI怎么找? 2383409
邀请新用户注册赠送积分活动 1378169
关于科研通互助平台的介绍 1345990