清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predictive Modeling for Survival Outcomes in Surgically Resected Pancreatic Ductal Adenocarcinoma: A Comprehensive Machine Learning Approach Using Real-World Data

作者
Kaleem S. Ahmed,Sheriff M Issaka,Benjamin A. Y. Cher,Clayton T. Marcinak,Syed Nabeel Zafar
标识
DOI:10.1177/2993091x251386458
摘要

Introduction: Surgery for pancreatic ductal adenocarcinoma (PDAC) is highly morbid, so appropriate patient selection is crucial. Machine learning models have demonstrated potential for predicting outcomes and facilitating decision-making. We sought to develop and validate machine learning models for 1-year survival in patients with surgically resected PDAC using data from a large, multicenter, real-world electronic health record (EHR) database. Methods: Retrospective cohort study using the American Society of Clinical Oncology CancerLinQ Discovery® Pancreatic Cancer Dataset. Study population included patients with PDAC undergoing surgical resection from 1998 to 2021. Data were abstracted from the EHR, considering only information available prior to surgery. The primary outcome was survival at 1 year post-resection. Five machine learning models were developed using a robust feature selection process. Predictive accuracy was assessed using the area under the curve (AUC) in a hold-out dataset. Results: The study included 1,567 patients who underwent curative-intent pancreatectomy, and 870 (55.5%) survived at least 1 year. The gradient boosting (GB) model performed best and achieved an AUC of 0.78, sensitivity of 90%, specificity of 44%, and positive/negative predictive values of 0.65/0.80. Feature importance analysis revealed type of operation, receipt of chemotherapy, tumor size, and ethnicity as the most important predictors. Conclusions: The most accurate model predicted 1-year survival with higher accuracy than prior published models. This study adds to ongoing efforts to predict post-resection outcomes and generate useful data to facilitate patient selection for resection. The study also demonstrates the opportunities and challenges of applying machine learning techniques to EHR data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
12秒前
gwbk完成签到,获得积分10
50秒前
1分钟前
Wang完成签到 ,获得积分20
2分钟前
文献属于所有科研人完成签到 ,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
一盏壶完成签到,获得积分10
2分钟前
Miracle完成签到,获得积分10
2分钟前
雪山飞龙发布了新的文献求助10
2分钟前
雪山飞龙发布了新的文献求助10
3分钟前
雪山飞龙完成签到,获得积分10
3分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
3分钟前
freebird完成签到,获得积分10
3分钟前
TT完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
机智涵阳完成签到,获得积分10
4分钟前
贝贝完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
清脆的靖仇完成签到,获得积分10
5分钟前
科研通AI6应助阔达的未来采纳,获得10
5分钟前
大个应助阔达的未来采纳,获得10
5分钟前
精明玲完成签到 ,获得积分10
5分钟前
null应助crane采纳,获得10
5分钟前
小蘑菇应助阔达的未来采纳,获得10
6分钟前
大模型应助阔达的未来采纳,获得30
6分钟前
隐形曼青应助阔达的未来采纳,获得10
6分钟前
爆米花应助阔达的未来采纳,获得30
6分钟前
科研通AI6应助阔达的未来采纳,获得10
6分钟前
Jasper应助阔达的未来采纳,获得10
6分钟前
852应助阔达的未来采纳,获得10
6分钟前
大模型应助阔达的未来采纳,获得30
6分钟前
领导范儿应助阔达的未来采纳,获得10
6分钟前
彭于晏应助阔达的未来采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
脑洞疼应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617147
求助须知:如何正确求助?哪些是违规求助? 4701498
关于积分的说明 14913769
捐赠科研通 4750314
什么是DOI,文献DOI怎么找? 2549337
邀请新用户注册赠送积分活动 1512350
关于科研通互助平台的介绍 1474091