Hierarchical multimodal self-attention-based graph neural network for DTI prediction

计算机科学 人工智能 水准点(测量) 机器学习 特征(语言学) 人工神经网络 图形 过程(计算) 深度学习 理论计算机科学 大地测量学 语言学 操作系统 哲学 地理
作者
Jilong Bian,Hao Lu,Guanghui Dong,Guohua Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (4)
标识
DOI:10.1093/bib/bbae293
摘要

Abstract Drug–target interactions (DTIs) are a key part of drug development process and their accurate and efficient prediction can significantly boost development efficiency and reduce development time. Recent years have witnessed the rapid advancement of deep learning, resulting in an abundance of deep learning-based models for DTI prediction. However, most of these models used a single representation of drugs and proteins, making it difficult to comprehensively represent their characteristics. Multimodal data fusion can effectively compensate for the limitations of single-modal data. However, existing multimodal models for DTI prediction do not take into account both intra- and inter-modal interactions simultaneously, resulting in limited presentation capabilities of fused features and a reduction in DTI prediction accuracy. A hierarchical multimodal self-attention-based graph neural network for DTI prediction, called HMSA-DTI, is proposed to address multimodal feature fusion. Our proposed HMSA-DTI takes drug SMILES, drug molecular graphs, protein sequences and protein 2-mer sequences as inputs, and utilizes a hierarchical multimodal self-attention mechanism to achieve deep fusion of multimodal features of drugs and proteins, enabling the capture of intra- and inter-modal interactions between drugs and proteins. It is demonstrated that our proposed HMSA-DTI has significant advantages over other baseline methods on multiple evaluation metrics across five benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
kingwill应助化学采纳,获得20
2秒前
正直发布了新的文献求助10
2秒前
李爱国应助豆豆采纳,获得10
2秒前
纯真的小婷完成签到 ,获得积分10
2秒前
2秒前
顾矜应助ZJH采纳,获得10
2秒前
4秒前
球球完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
Cheetahhh发布了新的文献求助10
5秒前
帅气犀牛完成签到,获得积分10
5秒前
Luna完成签到 ,获得积分10
6秒前
架子猫完成签到,获得积分10
6秒前
6秒前
6秒前
喜悦海秋发布了新的文献求助10
8秒前
凳子3333发布了新的文献求助10
8秒前
8秒前
陌路完成签到,获得积分10
9秒前
叉叉完成签到,获得积分10
9秒前
9秒前
10秒前
奋斗金连发布了新的文献求助10
10秒前
小佳发布了新的文献求助10
10秒前
HYH完成签到 ,获得积分10
10秒前
寻梦发布了新的文献求助10
11秒前
情怀应助木又权采纳,获得10
11秒前
panpan111发布了新的文献求助10
11秒前
江江完成签到,获得积分10
12秒前
Foxy发布了新的文献求助10
12秒前
hyf完成签到,获得积分10
13秒前
汉堡包应助不上课不行采纳,获得200
13秒前
所所应助要减肥小小采纳,获得10
13秒前
Cheetahhh完成签到,获得积分10
13秒前
阿星捌发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951641
求助须知:如何正确求助?哪些是违规求助? 3497078
关于积分的说明 11085803
捐赠科研通 3227504
什么是DOI,文献DOI怎么找? 1784450
邀请新用户注册赠送积分活动 868519
科研通“疑难数据库(出版商)”最低求助积分说明 801154