The diagnostic performance of AI-based algorithms to discriminate between NMOSD and MS using MRI features: A systematic review and meta-analysis

医学 视神经脊髓炎 多发性硬化 人工智能 磁共振成像 机器学习 荟萃分析 光谱紊乱 算法 放射科 内科学 计算机科学 精神科
作者
Masoud Etemadifar,Mahdi Norouzi,Seyyed‐Ali Alaei,Raheleh Karimi,Mehri Salari
出处
期刊:Multiple sclerosis and related disorders [Elsevier]
卷期号:87: 105682-105682 被引量:4
标识
DOI:10.1016/j.msard.2024.105682
摘要

Background Magnetic resonance imaging [MRI] findings in Neuromyelitis optica spectrum disorder [NMOSD] and Multiple Sclerosis [MS] patients could lead us to discriminate toward them. For instance, U-fiber and Dawson's finger-type lesions are suggestive of MS, however linear ependymal lesions raise the possibility of NMOSD. Recently, artificial intelligence [AI] models have been used to discriminate between NMOSD and MS based on MRI features. In this study, we aim to systematically review the capability of AI algorithms in NMOSD and MS discrimination based on MRI features. Method We searched PubMed, Scopus, Web of Sciences, Embase, and IEEE databases up to August 2023. All studies that used AI-based algorithms to discriminate between NMOSD and MS using MRI features were included, without any restriction in time, region, race, and age. Data on NMOSD and MS patients, Aquaporin-4 antibodies [AQP4-Ab] status, diagnosis criteria, performance metrics (accuracy, sensitivity, specificity, and AUC), artificial intelligence paradigm, MR imaging, and used features were extracted. This study is registered with PROSPERO, CRD42023465265. Results Fifteen studies were included in this systematic review, with sample sizes ranging between 53 and 351. 1,362 MS patients and 1,118 NMOSD patients were included in our systematic review. AQP4-Ab was positive in 94.9% of NMOSD patients in 9 studies. Eight studies used machine learning [ML] as a classifier, while 7 used deep learning [DL]. AI models based on only MRI or MRI and clinical features yielded a pooled accuracy of 82 % (95 % CI: 78-86 %), sensitivity of 83 % (95 % CI: 79-88 %), and specificity of 80 % (95 % CI: 75-86%). In subgroup analysis, using only MRI features yielded an accuracy, sensitivity, and specificity of 83 % (95 % CI: 78-88 %), 81 % (95 % CI: 76-87 %), and 84% (95 % CI: 79-89 %), respectively. Conclusion AI models based on MRI features showed a high potential to discriminate between NMOSD and MS. However, heterogeneity in MR imaging, model evaluation, and reporting performance metrics, among other confounders, affected the reliability of our results. Well-designed studies on multicentric datasets, standardized imaging and evaluation protocols, and detailed transparent reporting of results are needed to reach optimal performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张凯丽完成签到,获得积分10
刚刚
刚刚
求助人员应助zzzwwwkkk采纳,获得10
刚刚
1秒前
1秒前
dzjin发布了新的文献求助200
1秒前
等待的鱼完成签到,获得积分10
1秒前
1秒前
爆米花应助cyndi采纳,获得10
1秒前
QQ完成签到,获得积分10
1秒前
2秒前
明明完成签到,获得积分10
2秒前
合适的白筠完成签到,获得积分10
2秒前
小号完成签到,获得积分10
2秒前
陆肆柒完成签到 ,获得积分10
2秒前
爆米花应助SUNYAOSUNYAO采纳,获得10
3秒前
Captainhana完成签到,获得积分10
3秒前
白踏歌发布了新的文献求助10
3秒前
亦v发布了新的文献求助10
3秒前
4秒前
无限行之完成签到,获得积分10
4秒前
4秒前
Jun发布了新的文献求助10
4秒前
4秒前
新酱不爱吃青椒完成签到 ,获得积分10
4秒前
灵巧蓉完成签到,获得积分10
5秒前
小陶完成签到,获得积分20
5秒前
NexusExplorer应助zhengpaipian采纳,获得10
5秒前
always发布了新的文献求助10
5秒前
5秒前
5秒前
Majoe完成签到,获得积分10
5秒前
jialiu完成签到,获得积分10
5秒前
anzhe完成签到,获得积分10
5秒前
hyx发布了新的文献求助10
6秒前
无限白羊发布了新的文献求助10
6秒前
有魅力的大船完成签到,获得积分10
6秒前
大宝剑3号完成签到 ,获得积分10
6秒前
欧阳振完成签到,获得积分10
6秒前
林小清发布了新的文献求助30
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516814
求助须知:如何正确求助?哪些是违规求助? 4609871
关于积分的说明 14518264
捐赠科研通 4546672
什么是DOI,文献DOI怎么找? 2491314
邀请新用户注册赠送积分活动 1473067
关于科研通互助平台的介绍 1444924