TM-OKC: An Unsupervised Topic Model for Text in Online Knowledge Communities

计算机科学 主题模型 数据科学 情报检索 自然语言处理
作者
Dongcheng Zhang,Kunpeng Zhang,Yi Yang,David A. Schweidel
出处
期刊:Management Information Systems Quarterly [MIS Quarterly]
卷期号:48 (3): 931-978 被引量:1
标识
DOI:10.25300/misq/2023/17885
摘要

Online knowledge communities (OKCs), such as question-and-answer sites, have become increasingly popular venues for knowledge sharing. Accordingly, it is necessary for researchers and practitioners to develop effective and efficient text analysis tools to understand the massive amount of user-generated content (UGC) on OKCs. Unsupervised topic modeling has been widely adopted to extract human-interpretable latent topics embedded in texts. These identified topics can be further used in subsequent analysis and managerial practices. However, existing generic topic models that assume documents are independent are inappropriate for analyzing OKCs where structural relationships exist between questions and answers. Thus, a new method is needed to fill this research gap. In this study, we propose a new topic model specifically designed for the text in OKCs. We make three primary contributions to the research on topic modeling in this context. First, we build a general and flexible Bayesian framework to explicitly model structural and temporal dependencies among texts. Second, we statistically demonstrate the approximate model inference using mean-field and coordinate ascent algorithms. Third, we showcase the practical value and relative merit of our method via a specific downstream task (i.e., user profiling). The proposed model is illustrated using two real-world datasets from well-known OKCs (i.e., Stack Exchange and Quora), and extensive experiments demonstrate its superiority over several cutting-edge benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
cchi完成签到,获得积分10
1秒前
NexusExplorer应助笔芯采纳,获得10
1秒前
快乐滑板发布了新的文献求助10
1秒前
2秒前
2秒前
Duan完成签到 ,获得积分10
2秒前
尼莫发布了新的文献求助10
2秒前
2秒前
DX发布了新的文献求助20
2秒前
充电宝应助CYT采纳,获得10
3秒前
3秒前
慕青应助000采纳,获得10
3秒前
汉堡包应助Li656943234采纳,获得10
4秒前
热心的凡之完成签到,获得积分10
4秒前
4秒前
Shipeng发布了新的文献求助10
4秒前
cchi发布了新的文献求助10
5秒前
5秒前
illusion完成签到,获得积分10
5秒前
蛙鼠兔完成签到,获得积分10
6秒前
金22完成签到,获得积分10
7秒前
研友_Z7WQzZ发布了新的文献求助10
7秒前
SYLH应助2316953734采纳,获得10
7秒前
小瑞完成签到,获得积分10
8秒前
研友_ED5GK发布了新的文献求助10
8秒前
kakafan发布了新的文献求助10
9秒前
9秒前
CodeCraft应助鱼在哪儿采纳,获得10
9秒前
CyrusSo524应助情殇采纳,获得10
10秒前
Su发布了新的文献求助10
10秒前
11秒前
Shipeng完成签到,获得积分20
13秒前
小羊烧鸡完成签到 ,获得积分10
13秒前
鱿鱼完成签到,获得积分10
13秒前
无名之辈完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841415
求助须知:如何正确求助?哪些是违规求助? 3383528
关于积分的说明 10530178
捐赠科研通 3103621
什么是DOI,文献DOI怎么找? 1709337
邀请新用户注册赠送积分活动 823110
科研通“疑难数据库(出版商)”最低求助积分说明 773816