A machine learning-based prediction model for gout in hyperuricemics: a nationwide cohort study

医学 痛风 接收机工作特性 高尿酸血症 非布索坦 内科学 队列 回顾性队列研究 药方 队列研究 医学诊断 物理疗法 尿酸 病理 药理学
作者
Shay Brikman,Liel Serfaty,Ran Abuhasira,Naomi Schlesinger,Amir Bieber,Nadav Rappoport
出处
期刊:Rheumatology [Oxford University Press]
卷期号:63 (9): 2411-2417 被引量:2
标识
DOI:10.1093/rheumatology/keae273
摘要

Abstract Objective To develop a machine learning-based prediction model for identifying hyperuricemic participants at risk of developing gout. Methods A retrospective nationwide Israeli cohort study used the Clalit Health Insurance database of 473 124 individuals to identify adults 18 years or older with at least two serum urate measurements exceeding 6.8 mg/dl between January 2007 and December 2022. Patients with a prior gout diagnosis or on gout medications were excluded. Patients’ demographic characteristics, community and hospital diagnoses, routine medication prescriptions and laboratory results were used to train a risk prediction model. A machine learning model, XGBoost, was developed to predict the risk of gout. Feature selection methods were used to identify relevant variables. The model's performance was evaluated using the receiver operating characteristic area under the curve (ROC AUC) and precision-recall AUC. The primary outcome was the diagnosis of gout among hyperuricemic patients. Results Among the 301 385 participants with hyperuricemia included in the analysis, 15 055 (5%) were diagnosed with gout. The XGBoost model had a ROC-AUC of 0.781 (95% CI 0.78–0.784) and precision-recall AUC of 0.208 (95% CI 0.195–0.22). The most significant variables associated with gout diagnosis were serum uric acid levels, age, hyperlipidemia, non-steroidal anti-inflammatory drugs and diuretic purchases. A compact model using only these five variables yielded a ROC-AUC of 0.714 (95% CI 0.706–0.723) and a negative predictive value (NPV) of 95%. Conclusions The findings of this cohort study suggest that a machine learning-based prediction model had relatively good performance and high NPV for identifying hyperuricemic participants at risk of developing gout.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
隐形静芙发布了新的文献求助20
1秒前
理学猫发布了新的文献求助10
4秒前
快中文章啊完成签到,获得积分10
4秒前
牛牛发布了新的文献求助10
4秒前
zhxia完成签到,获得积分10
4秒前
倩倩发布了新的文献求助10
4秒前
5秒前
7秒前
8秒前
8秒前
希望天下0贩的0应助xixi采纳,获得10
9秒前
六月歌者发布了新的文献求助10
11秒前
12秒前
13秒前
990419完成签到,获得积分10
13秒前
魔女完成签到,获得积分10
15秒前
牛牛完成签到,获得积分20
16秒前
科小白完成签到 ,获得积分10
16秒前
16秒前
zdy完成签到,获得积分10
18秒前
18秒前
18秒前
18秒前
18秒前
江峰发布了新的文献求助10
19秒前
虚心怜阳完成签到 ,获得积分10
21秒前
21秒前
decade_32完成签到 ,获得积分10
22秒前
七月发布了新的文献求助10
23秒前
cj发布了新的文献求助10
23秒前
24秒前
WUHUIWEN完成签到,获得积分10
24秒前
Felly完成签到 ,获得积分10
25秒前
xixi发布了新的文献求助10
26秒前
大方明杰发布了新的文献求助10
27秒前
29秒前
qiao应助科研通管家采纳,获得10
30秒前
所所应助科研通管家采纳,获得10
30秒前
CipherSage应助科研通管家采纳,获得30
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793328
求助须知:如何正确求助?哪些是违规求助? 3338065
关于积分的说明 10288573
捐赠科研通 3054717
什么是DOI,文献DOI怎么找? 1676128
邀请新用户注册赠送积分活动 804144
科研通“疑难数据库(出版商)”最低求助积分说明 761757