SharpEye: Identify mKCP Camouflage Traffic through Feature Optimization

伪装 计算机科学 鉴定(生物学) 架空(工程) 光学(聚焦) 特征(语言学) 计算机网络 软件部署 数据挖掘 人工智能 实时计算 语言学 哲学 植物 物理 光学 生物 操作系统
作者
Yuwei Xu,Zizhi Zhu,Yunpeng Bai,Lilanyi Wu,Kehui Song,Guang Cheng
标识
DOI:10.1109/trustcom60117.2023.00158
摘要

As a new self-developed protocol of V2Ray, mKCP disguises users' network access as communication of four network applications by forging application layer headers to evade traffic-based detection. The emergence of mKCP has received widespread attention. Whether mKCP can provide secure network access that protects user privacy is the focus. Traditional methods cannot identify mKCP camouflage traffic, but machine learning (ML)-based traffic identification is considered a promising direction. Unlike the previous network traffic classification, mKCP camouflage traffic identification introduces new challenges. First, existing work has neither published any dataset containing mKCP camouflage traffic nor designed specific traffic features. Second, no researchers have optimized the identification scheme for deployment on network devices. Aiming at the shortcomings, we propose SharpEye, an ML-based mKCP camouflage traffic identification scheme. The novelty of our work lies in three points. Firstly, a complete dataset containing mKCP camouflage traffic is constructed through long-term traffic collection. Secondly, by analyzing the communication patterns of mKCP traffic, a feature set mFS is designed to improve identification accuracy. Finally, a two-stage feature selection method mGBFS is proposed to improve the operation efficiency. The experimental results show that mFS can enhance the performance of classifiers in identifying mKCP camouflage traffic, and mGBFS reduces the running time and overhead while ensuring high accuracy. Therefore, SharpEye achieves accurate and efficient mKCP camouflage traffic identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
耶斯耶斯完成签到 ,获得积分20
刚刚
万能图书馆应助MENG采纳,获得10
刚刚
1秒前
WRZ完成签到 ,获得积分10
1秒前
任娜发布了新的文献求助10
1秒前
2秒前
2秒前
威武绿真完成签到,获得积分10
3秒前
3秒前
3秒前
老唐发布了新的文献求助10
3秒前
Aaron应助laity采纳,获得20
4秒前
ding应助一杯晨汁采纳,获得10
5秒前
阿瑞完成签到,获得积分10
5秒前
wjt发布了新的文献求助10
5秒前
柠檬精翠翠完成签到 ,获得积分10
6秒前
幸福广山发布了新的文献求助10
6秒前
西南雪豹发布了新的文献求助10
6秒前
科研通AI5应助奇奇采纳,获得10
6秒前
爆米花应助stoner采纳,获得10
7秒前
7秒前
田様应助xun采纳,获得10
8秒前
Akim应助英俊素采纳,获得10
8秒前
香蕉觅云应助Alice采纳,获得10
8秒前
yukito应助任娜采纳,获得10
8秒前
偷乐发布了新的文献求助10
8秒前
8秒前
xuan完成签到,获得积分10
9秒前
水牛完成签到,获得积分10
9秒前
笃于时发布了新的文献求助10
9秒前
盒子应助崔洪瑞采纳,获得10
9秒前
10秒前
侯卿发布了新的文献求助30
10秒前
10秒前
10秒前
111完成签到,获得积分10
11秒前
我是老大应助乌拉采纳,获得10
11秒前
13秒前
oldyang发布了新的文献求助10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790196
求助须知:如何正确求助?哪些是违规求助? 3334887
关于积分的说明 10272750
捐赠科研通 3051350
什么是DOI,文献DOI怎么找? 1674626
邀请新用户注册赠送积分活动 802730
科研通“疑难数据库(出版商)”最低求助积分说明 760846