DMSA-UNet: Dual Multi-Scale Attention makes UNet more strong for medical image segmentation

对偶(语法数字) 比例(比率) 分割 人工智能 计算机视觉 计算机科学 图像(数学) 地图学 地理 艺术 文学类
作者
Xiang Li,Chong Fu,Qun Wang,Wenchao Zhang,Chiu‐Wing Sham,Junxin Chen
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:299: 112050-112050 被引量:5
标识
DOI:10.1016/j.knosys.2024.112050
摘要

Convolutional Neural Networks (CNNs), particularly UNet, have become prevalent in medical image segmentation tasks. However, CNNs inherently struggle to capture global dependencies owing to their intrinsic localities. Although Transformers have shown superior performance in modeling global dependencies, they encounter the challenges of high model complexity and dependencies on large-scale pre-trained models. Furthermore, the current attention mechanisms of Transformers only consider single-scale feature interactions, making it difficult to analyze feature correlations at different scales in the same attention layer. In this paper, we propose DMSA-UNet, which strengthens the global analysis capability and maximally preserves the local inductive bias capability while maintaining low model complexity. Specifically, we reformulate vanilla self-attention as efficient Dual Multi-Scale Attention (DMSA) that captures multi-scale-enhanced global information along both spatial and channel dimensions with linear complexity and pixel granularity. We also introduce a context-gated linear unit in DMSA for each feature to obtain adaptive attention based on neighboring contexts. To preserve the convolutional properties, DMSAs are inserted directly between the UNet's convolutional blocks rather than replacing them. Because DMSA has multi-scale adaptive aggregation capability, the deepest convolutional block of UNet is removed to mitigate the noise interference caused by fixed convolutional kernels with large receptive fields. We further leverage efficient convolution to reduce computational redundancy. DMSA-UNet is highly competitive in terms of model complexity, with 33% fewer parameters and 15% fewer FLOPs (at 2242 resolution) than UNet. Extensive experimental results on four different medical datasets demonstrate that DMSA-UNet outperforms other state-of-the-art approaches without any pre-trained models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋秋秋发布了新的文献求助10
刚刚
科研通AI2S应助芳芳采纳,获得10
2秒前
2秒前
lxlxllx89发布了新的文献求助10
3秒前
6秒前
小丸子完成签到,获得积分10
7秒前
皮皮灵发布了新的文献求助10
8秒前
寒舟饮发布了新的文献求助30
10秒前
科研通AI5应助huang采纳,获得10
11秒前
小龅牙吖完成签到,获得积分10
11秒前
三石盟约完成签到,获得积分10
11秒前
CipherSage应助小鲨鱼采纳,获得10
11秒前
11秒前
13秒前
111发布了新的文献求助10
15秒前
16秒前
17秒前
斯文败类应助陈玥桦采纳,获得10
17秒前
19秒前
古月发布了新的文献求助10
20秒前
20秒前
蜕变发布了新的文献求助10
21秒前
半柚发布了新的文献求助10
22秒前
闪闪楷瑞完成签到,获得积分10
23秒前
Perry给L_online的求助进行了留言
24秒前
damahayu发布了新的文献求助10
25秒前
27秒前
lxlxllx89发布了新的文献求助10
27秒前
舒适的老虎完成签到,获得积分20
29秒前
0h完成签到,获得积分10
30秒前
Thunnus001完成签到,获得积分10
31秒前
脑洞疼应助半柚采纳,获得10
31秒前
32秒前
Belinda完成签到 ,获得积分10
32秒前
34秒前
Rookie发布了新的文献求助10
37秒前
37秒前
starleo完成签到,获得积分10
38秒前
王佳豪发布了新的文献求助10
42秒前
Rookie完成签到,获得积分10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323857
关于积分的说明 10216183
捐赠科研通 3039074
什么是DOI,文献DOI怎么找? 1667762
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366