亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CT radiomics identifying non‐responders to neoadjuvant chemoradiotherapy among patients with locally advanced rectal cancer

医学 无线电技术 逻辑回归 放化疗 结直肠癌 队列 放射科 放射治疗 曲线下面积 内科学 肿瘤科 癌症
作者
Zinan Zhang,Xiaoping Yi,Qian Pei,Yan Fu,Bin Li,Haipeng Liu,Zaide Han,Changyong Chen,Peipei Pang,Huashan Lin,Guanghui Gong,Hongling Yin,Hongyan Zai,Bihong T. Chen
出处
期刊:Cancer Medicine [Wiley]
卷期号:12 (3): 2463-2473 被引量:7
标识
DOI:10.1002/cam4.5086
摘要

Abstract Background and Purpose Early detection of non‐response to neoadjuvant chemoradiotherapy (nCRT) for locally advanced colorectal cancer (LARC) remains challenging. We aimed to assess whether pretreatment radiotherapy planning computed tomography (CT) radiomics could distinguish the patients with no response or no downstaging after nCRT from those with response and downstaging after nCRT. Materials and Methods Patients with LARC who were treated with nCRT were retrospectively enrolled between March 2009 and March 2019. Traditional radiological characteristics were analyzed by visual inspection and radiomic features were analyzed through computational methods from the pretreatment radiotherapy planning CT images. Differentiation models were constructed using radiomic methods and clinicopathological characteristics for predicting non‐response to nCRT. Model performance was assessed for classification efficiency, calibration, discrimination, and clinical application. Results This study enrolled a total of 215 patients, including 151 patients in the training cohort (50 non‐responders and 101 responders) and 64 patients in the validation cohort (21 non‐responders and 43 responders). For predicting non‐response, the model constructed with an ensemble machine learning method had higher performance with area under the curve (AUC) values of 0.92 and 0.89 as compared to the model constructed with the logistic regression method (AUC: 0.72 and 0.71 for the training and validation cohorts, respectively). Both decision curve and calibration curve analyses confirmed that the ensemble machine learning model had higher prediction performance. Conclusion Pretreatment CT radiomics achieved satisfying performance in predicting non‐response to nCRT and could be helpful to assist in treatment planning for patients with LARC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lllkkk发布了新的文献求助10
4秒前
CoCo完成签到 ,获得积分10
8秒前
wstkkkkykk完成签到 ,获得积分10
10秒前
妮妮完成签到,获得积分10
11秒前
缥缈涵菡完成签到,获得积分10
12秒前
17秒前
YumiPg发布了新的文献求助10
22秒前
27秒前
平常的毛豆应助妮妮采纳,获得10
28秒前
Luka发布了新的文献求助10
32秒前
33秒前
Phung发布了新的文献求助10
39秒前
43秒前
43秒前
麻瓜完成签到,获得积分10
44秒前
48秒前
50秒前
大气山兰发布了新的文献求助20
51秒前
asd1576562308完成签到 ,获得积分10
52秒前
54秒前
zbx完成签到,获得积分20
1分钟前
Luka完成签到,获得积分10
1分钟前
大气山兰完成签到,获得积分10
1分钟前
zho关闭了zho文献求助
1分钟前
wish完成签到 ,获得积分10
1分钟前
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
共享精神应助Mona采纳,获得10
1分钟前
田様应助Lin2019采纳,获得10
1分钟前
1分钟前
zho发布了新的文献求助10
1分钟前
1分钟前
zbx发布了新的文献求助10
1分钟前
梨儿完成签到,获得积分10
1分钟前
Estrella完成签到 ,获得积分10
1分钟前
Mona发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助guan采纳,获得10
1分钟前
1分钟前
俭朴的滑板完成签到,获得积分10
1分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807998
求助须知:如何正确求助?哪些是违规求助? 3352680
关于积分的说明 10359922
捐赠科研通 3068647
什么是DOI,文献DOI怎么找? 1685184
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766022