最大化
条件期望
正规化(语言学)
收敛速度
转化(遗传学)
数学
参数统计
非线性系统
数学优化
期望最大化算法
状态向量
算法
控制理论(社会学)
计算机科学
人工智能
最大似然
钥匙(锁)
基因
统计
经典力学
物理
量子力学
计量经济学
生物化学
化学
控制(管理)
计算机安全
作者
Shun Liu,Yan Liang,Linfeng Xu
标识
DOI:10.1016/j.sigpro.2022.108729
摘要
This paper addresses the problem of maneuvering extended object tracking, in which the object extension (OE) and the turn rate are identified simultaneously. Due to its non-linearity with respect to the turn rate, the state transition is converted into a linear form of a newly defined hyper-parametric vector by parameter substitution. For the hyper-parametric equality constraints (HECs) introduced in the transformation, a constrained expectation conditional maximization algorithm is designed. The HECs are projected onto the conditional expectation function for regularization, so as to realize the iterative identification of multi-parameter (i.e., OE and turn rate). The transformation and CECM optimization bring the advantage of avoiding nonlinear model approximation, which is important for the convergence and accuracy of state estimation. Finally, simulation results demonstrate the superiority of the proposed method in terms of both estimation accuracy and identification effectiveness.
科研通智能强力驱动
Strongly Powered by AbleSci AI