亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Brachytherapy outcome modeling in cervical cancer patients: A predictive machine learning study on patient-specific clinical, physical and dosimetric parameters

医学 近距离放射治疗 接收机工作特性 逻辑回归 随机森林 支持向量机 机器学习 置信区间 宫颈癌 曲线下面积 核医学 人工智能 放射治疗 放射科 癌症 内科学 计算机科学
作者
Neda Abdalvand,Mahdi Sadeghi,Seied Rabi Mahdavi,Hamid Abdollahi,Younes Qasempour,Fatemeh Mohammadian,Mohammad Javad Tahmasebi Birgani,Khadijeh Hosseini
出处
期刊:Brachytherapy [Elsevier BV]
卷期号:21 (6): 769-782 被引量:6
标识
DOI:10.1016/j.brachy.2022.06.007
摘要

To predict clinical response in locally advanced cervical cancer (LACC) patients by a combination of measures, including clinical and brachytherapy parameters and several machine learning (ML) approaches.Brachytherapy features such as insertion approaches, source metrics, dosimetric, and clinical measures were used for modeling. Four different ML approaches, including LASSO, Ridge, support vector machine (SVM), and Random Forest (RF), were applied to extracted measures for model development alone or in combination. Model performance was evaluated using the area under the curve (AUC) of receiver operating characteristics curve, sensitivity, specificity, and accuracy. Our results were compared with a reference model developed by simple logistic regression applied to three distinct clinical features identified by previous papers.One hundred eleven LACC patients were included. Nine data sets were obtained based on the features, and 36 predictive models were built. In terms of AUC, the model developed using RF applied to dosimetric, physical, and total BT sessions features were found as the most predictive [AUC; 0.82 (0.95 confidence interval (CI); 0.79 -0.93), sensitivity; 0.79, specificity; 0.76, and accuracy; 0.77]. The AUC (0.95 CI), sensitivity, specificity, and accuracy for the reference model were found as 0.56 (0.52 ...0.68), 0.51, 0.51, and 0.48, respectively. Most RF models had significantly better performance than the reference model (Bonferroni corrected p-value < 0.0014).Brachytherapy response can be predicted using dosimetric and physical parameters extracted from treatment parameters. Machine learning algorithms, including Random Forest, could play a critical role in such predictive modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
负责的沛柔完成签到,获得积分20
5秒前
7秒前
cossen完成签到 ,获得积分10
33秒前
jerry完成签到,获得积分10
37秒前
siqi完成签到,获得积分20
45秒前
SciGPT应助abc采纳,获得10
46秒前
科研通AI5应助cqbrain123采纳,获得10
50秒前
大鱼海棠发布了新的文献求助10
50秒前
50秒前
chenmo完成签到,获得积分10
53秒前
汪思显完成签到,获得积分10
57秒前
stuuuuuuuuuuudy完成签到 ,获得积分10
1分钟前
stevenliu67完成签到,获得积分10
1分钟前
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
小花排草应助科研通管家采纳,获得30
1分钟前
NexusExplorer应助大鱼海棠采纳,获得10
1分钟前
cqbrain123发布了新的文献求助10
1分钟前
1分钟前
abc发布了新的文献求助10
1分钟前
1分钟前
汉堡包应助激昂的冰海采纳,获得10
1分钟前
Hello应助siqi采纳,获得10
1分钟前
Marciu33发布了新的文献求助10
1分钟前
1分钟前
muhum完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
大鱼海棠发布了新的文献求助10
2分钟前
2分钟前
2分钟前
玖藻发布了新的文献求助10
2分钟前
KeYXB完成签到,获得积分10
2分钟前
牛马哥完成签到,获得积分10
2分钟前
3分钟前
小花排草应助科研通管家采纳,获得30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
李爱国应助科研通管家采纳,获得10
3分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4149182
求助须知:如何正确求助?哪些是违规求助? 3685388
关于积分的说明 11643239
捐赠科研通 3378892
什么是DOI,文献DOI怎么找? 1854295
邀请新用户注册赠送积分活动 916594
科研通“疑难数据库(出版商)”最低求助积分说明 830436