亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lidar remote sensing of forest biomass: A scale-invariant estimation approach using airborne lasers

激光雷达 遥感 森林资源清查 比例(比率) 测距 天蓬 环境科学 分位数 均方误差 线性模型 数学 统计 计算机科学 森林经营 地理 地图学 农林复合经营 电信 考古
作者
Kaiguang Zhao,Sorin Popescu,Ross Nelson
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:113 (1): 182-196 被引量:335
标识
DOI:10.1016/j.rse.2008.09.009
摘要

Researchers in lidar (Light Detection And Ranging) strive to search for the most appropriate laser-based metrics as predictors in regression models for estimating forest structural variables. Many previously developed models are scale-dependent that need to be fitted and then applied both at the same scale or pixel size. The objective of this paper is to develop methods for scale-invariant estimation of forest biomass using lidar data. We proposed two scale-invariant models for biomass: a linear functional model and an equivalent nonlinear model that use lidar-derived canopy height distributions (CHD) and canopy height quantile functions (CHQ) as predictors, respectively. The two models are called functional regression models because the predictors CHD and CHQ are themselves functions or functional data. The model formulation was justified mathematically under moderate assumptions. We also created a fine-resolution biomass map by mapping individual tree component biomass in a temperate forest of eastern Texas with a lidar tree-delineation approach. The map was used as reference data to synthesize training and test datasets at multiple scales for validating the two scale-invariant models. Results suggest that the models can accurately predict biomass and yield consistent predictive performances across a variety of scales with an R2 ranging from 0.80 to 0.95 (RMSE: from 14. 3 Mg/ha to 33.7 Mg/ha) among all the fitted models. Results also show that a training data size of around 50 plots or less was enough to guarantee a good fitting of the linear functional model. Our findings demonstrate the effectiveness of CHD and CHQ as lidar metrics for estimating biomass as well as the capability of lidar for mapping biomass at a range of scales. The functional regression models of this study are useful for lidar-based forest inventory tasks where the analysis units vary in size and shape. They also hold promise for estimating other forest characteristics such as below-ground biomass, timber volume, crown fuel weight, and Leaf Area Index.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
量子星尘发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
43秒前
obedVL完成签到,获得积分10
1分钟前
zly完成签到 ,获得积分10
1分钟前
eyent燕子关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
kkkk完成签到 ,获得积分10
1分钟前
eyent燕子发布了新的文献求助10
2分钟前
2分钟前
狂野的含烟完成签到 ,获得积分10
2分钟前
2分钟前
lalala完成签到,获得积分10
2分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助20
3分钟前
Radarax发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
行走发布了新的文献求助10
4分钟前
4分钟前
完美世界应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
阿酸完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
阿酸关注了科研通微信公众号
5分钟前
ZoyaR完成签到,获得积分10
5分钟前
5分钟前
整齐的蜻蜓完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
Tsuzuri完成签到,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4668188
求助须知:如何正确求助?哪些是违规求助? 4048435
关于积分的说明 12520347
捐赠科研通 3741311
什么是DOI,文献DOI怎么找? 2066304
邀请新用户注册赠送积分活动 1095769
科研通“疑难数据库(出版商)”最低求助积分说明 976048