体内
体外
伤口愈合
肽
化学
药理学
细胞生物学
生物
生物化学
生物技术
免疫学
作者
Xiaojie Li,Ying Wang,Zhirong Zou,Meifeng Yang,Chunyun Wu,Yunshan Su,Jing Tang,Xinwang Yang
摘要
The healing of chronic wounds remains a considerable challenge in clinical trials and imposes severe financial and physiological burdens on patients. Many works are being tried to find ideal clinical promoting wound healing biomaterials. Small bioactive peptides with low cost and easy production, store and transfer become excellent candidates. Here, we identified a novel peptide (named OM-LV20) from skin secretions of odorous frog Odorrana margaretae. The peptide had an amino acid sequence of "LVGKLLKGAVGDVCGLLPIC," contained an intramolecular disulfide bridge at the C-terminus, and was produced by post-translational processing of a 71-residue prepropeptide. Our results showed that OM-LV20 had no direct microbe-killing effects, hemolytic activity, or acute toxicity, but did exhibit weak antioxidant activity. OM-LV20 promoted wound healing against human keratinocytes (HaCaT) and human skin fibroblasts (HSF) in both time- and dose-dependent manners. In addition, it induced the proliferation of HaCaT but not HSF cells. Of note, OM-LV20 showed strong wound healing-promoting activity in a mice model of full-thickness skin wound. Our research indicates the cellular and animal level wound healing potential of OM-LV20, and thus provides a novel bioactive peptide template for the development of wound healing agents and medicine.
科研通智能强力驱动
Strongly Powered by AbleSci AI