已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Intelligent Bearing Fault Diagnosis Method Combining Compressed Data Acquisition and Deep Learning

计算机科学 人工智能 断层(地质) 压缩传感 数据采集 特征提取 人工神经网络 深度学习 过程(计算) 领域知识 模式识别(心理学) 特征学习 机器学习 状态监测 数据挖掘 工程类 电气工程 操作系统 地质学 地震学
作者
Jiedi Sun,Changhong Yan,Jiangtao Wen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:67 (1): 185-195 被引量:403
标识
DOI:10.1109/tim.2017.2759418
摘要

Effective intelligent fault diagnosis has long been a research focus on the condition monitoring of rotary machinery systems. Traditionally, time-domain vibration-based fault diagnosis has some deficiencies, such as complex computation of feature vectors, excessive dependence on prior knowledge and diagnostic expertise, and limited capacity for learning complex relationships in fault signals. Furthermore, following the increase in condition data, how to promptly process the massive fault data and automatically provide accurate diagnosis has become an urgent need to solve. Inspired by the idea of compressed sensing and deep learning, a novel intelligent diagnosis method is proposed for fault identification of rotating machines. In this paper, a nonlinear projection is applied to achieve the compressed acquisition, which not only reduces the amount of measured data that contained all the information of faults but also realizes the automatic feature extraction in transform domain. For exploring the discrimination hidden in the acquired data, a stacked sparse autoencoders-based deep neural network is established and performed with an unsupervised learning procedure followed by a supervised fine-tuning process. We studied the significance of compressed acquisition and provided the effects of key factors and comparison with traditional methods. The effectiveness of the proposed method is validated using data sets from rolling element bearings and the analysis shows that it is able to obtain high diagnotic accuracies and is superior to the existing methods. The proposed method reduces the need of human labor and expertise and provides new strategy to handle the massive data more easily.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助胖Q采纳,获得10
1秒前
汉堡包应助BLUE采纳,获得10
1秒前
1秒前
2秒前
学无止境完成签到 ,获得积分10
5秒前
康K发布了新的文献求助10
5秒前
6秒前
单身的钧发布了新的文献求助10
6秒前
sskaze完成签到 ,获得积分10
7秒前
7秒前
9秒前
10秒前
举人烧烤发布了新的文献求助10
11秒前
11秒前
突突突发布了新的文献求助10
12秒前
14秒前
害羞耷发布了新的文献求助10
14秒前
科研通AI6.1应助丢丢银采纳,获得10
15秒前
传奇3应助xiongxiong采纳,获得10
15秒前
15秒前
LZR发布了新的文献求助10
15秒前
16秒前
18秒前
研友_VZG7GZ应助突突突采纳,获得10
20秒前
21秒前
茜茜发布了新的文献求助10
22秒前
Aviva发布了新的文献求助10
24秒前
琉璃慕倾君完成签到 ,获得积分10
24秒前
24秒前
脑洞疼应助举人烧烤采纳,获得10
25秒前
Ava应助单身的老太采纳,获得10
25秒前
25秒前
andrew完成签到,获得积分10
28秒前
胖Q发布了新的文献求助10
28秒前
28秒前
奥福发布了新的文献求助10
29秒前
Ciao完成签到,获得积分10
29秒前
Johnny完成签到,获得积分10
31秒前
高兴的万宝路完成签到,获得积分10
32秒前
33秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746095
求助须知:如何正确求助?哪些是违规求助? 5430774
关于积分的说明 15354692
捐赠科研通 4885972
什么是DOI,文献DOI怎么找? 2626998
邀请新用户注册赠送积分活动 1575502
关于科研通互助平台的介绍 1532213