已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluating the bonding performance of wood/bamboo composites through deep learning: Delamination percentage

分层(地质) 计算机科学 胶粘剂 复合数 过程(计算) 近似误差 材料科学 三角测量 复合材料 工艺工程 环氧树脂 平均绝对百分比误差 质量(理念) 复合材料层合板 观测误差 准确度和精密度 领域(数学) 模式(计算机接口) 粘接 算法 对比度(视觉) 激光器 钥匙(锁) 均方误差 人工神经网络 测量不确定度 实验设计 还原(数学) 机械工程 耐久性
作者
Bin Yang,Haitao Huang,Zheying Liu,Jian Peng,Hongping Dong,Xinhui Liang,Xiazhen Li,Xianjun Li
出处
期刊:Industrial Crops and Products [Elsevier]
卷期号:236: 121945-121945
标识
DOI:10.1016/j.indcrop.2025.121945
摘要

Scientifically, efficiently and accurately evaluating the adhesive bonding performance is a critical process in ensuring the quality of composite materials. The delamination rate (DP), as one of the key evaluation indicators of bonding performance, is mainly measured manually, which cannot meet the demands of industrial production. To address this issue, deep learning (DL) was employed for the detection of DP, and nine common application scenarios were simulated by combining epoxy resin, phenolic resin and methylene diphenyl diisocyanate resin in combination with bamboo and wood. Besides, an optimization approach integrating laser triangulation was adopted to improve the measurement accuracy of DL in detecting DP. The results showed that DL can served as a feasible approach for measuring DP across all scenarios. However, its measurement accuracy is substantially limited, with the maximum absolute error and relative error reaching up to 79.2 and 100 %, respectively. This limitation was primarily attributed to the variations among application scenarios, such as the inherent color of adhesive, sample, and defects, which constitute the key factors influencing measurement precision. Nevertheless, following the optimization through laser triangulation, the measurement accuracy of DL had been improved by a factor of 9.8, and with an average relative error and absolute error below 20 %, indicating that it was sufficiently accurate for industrial production. The automated measurement technology employed in this study has considerably enhanced the efficiency of measuring the DP index. This advancement provided robust theoretical and technical support for the integration of quality inspection and green processing in the field of composite materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
未来可期发布了新的文献求助30
1秒前
Spine Lin发布了新的文献求助30
3秒前
领导范儿应助a涵采纳,获得10
4秒前
健康的青槐完成签到 ,获得积分10
5秒前
大先生完成签到,获得积分10
8秒前
10秒前
10秒前
MCRing完成签到,获得积分10
12秒前
大先生发布了新的文献求助10
13秒前
花里尘完成签到,获得积分10
14秒前
ouo发布了新的文献求助10
15秒前
和平鸽完成签到,获得积分10
17秒前
17秒前
19秒前
ITACHI发布了新的文献求助10
21秒前
23秒前
23秒前
科研通AI6应助伶俐惜萱采纳,获得10
25秒前
小珂完成签到,获得积分10
26秒前
27秒前
by发布了新的文献求助10
28秒前
qu完成签到 ,获得积分10
29秒前
29秒前
张志超发布了新的文献求助10
31秒前
霸气灵松完成签到 ,获得积分10
32秒前
ITACHI完成签到,获得积分10
33秒前
叶95发布了新的文献求助10
33秒前
爱笑的毛衣完成签到,获得积分10
33秒前
34秒前
不安青牛应助闪闪的熠彤采纳,获得20
37秒前
40秒前
和平鸽发布了新的文献求助10
40秒前
43秒前
忧虑的安青完成签到,获得积分10
45秒前
45秒前
48秒前
研友_LX7Qg8完成签到 ,获得积分10
49秒前
小透明发布了新的文献求助10
49秒前
王先进发布了新的文献求助10
50秒前
beforethedawn完成签到,获得积分10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469887
求助须知:如何正确求助?哪些是违规求助? 4572878
关于积分的说明 14337540
捐赠科研通 4499791
什么是DOI,文献DOI怎么找? 2465313
邀请新用户注册赠送积分活动 1453731
关于科研通互助平台的介绍 1428270