重编程
转录组
生物
细胞生物学
单细胞分析
RNA剪接
选择性拼接
细胞分化
细胞
下调和上调
细胞命运测定
计算生物学
基因表达
遗传学
基因
核糖核酸
转录因子
外显子
作者
Ziqing Liu,Li Wang,Joshua D. Welch,Hong Ma,Yang Zhou,Haley Ruth Vaseghi,Shuo Yu,Joseph B. Wall,Sahar Alimohamadi,Michael Zheng,Chaoying Yin,Weining Shen,Jan F. Prins,Jiandong Liu,Qian Li
出处
期刊:Nature
[Nature Portfolio]
日期:2017-10-24
卷期号:551 (7678): 100-104
被引量:180
摘要
Single-cell transcriptomics analyses of cell intermediates during the reprogramming from fibroblast to cardiomyocyte were used to reconstruct the reprogramming trajectory and to uncover intermediate cell populations, gene pathways and regulators involved in this process. To elucidate the mechanistic underpinnings of fibroblasts reprogramming to cardiomyocytes, Li Qian and colleagues have used a single-cell RNA sequencing approach. They find that the initial steps that drive the global expression changes that are critical for reprogramming encompass the downregulation of factors involved in mRNA processing and splicing, and in particular the splicing factor Ptbp1. Downregulation of Ptbp1 is essential for cells to adopt a cardiac-specific splicing pattern. The approach also led to the identification of surface markers that allow enrichment of induced cardiomyocytes during reprogramming. Direct lineage conversion offers a new strategy for tissue regeneration and disease modelling. Despite recent success in directly reprogramming fibroblasts into various cell types, the precise changes that occur as fibroblasts progressively convert to the target cell fates remain unclear. The inherent heterogeneity and asynchronous nature of the reprogramming process renders it difficult to study this process using bulk genomic techniques. Here we used single-cell RNA sequencing to overcome this limitation and analysed global transcriptome changes at early stages during the reprogramming of mouse fibroblasts into induced cardiomyocytes (iCMs)1,2,3,4. Using unsupervised dimensionality reduction and clustering algorithms, we identified molecularly distinct subpopulations of cells during reprogramming. We also constructed routes of iCM formation, and delineated the relationship between cell proliferation and iCM induction. Further analysis of global gene expression changes during reprogramming revealed unexpected downregulation of factors involved in mRNA processing and splicing. Detailed functional analysis of the top candidate splicing factor, Ptbp1, revealed that it is a critical barrier for the acquisition of cardiomyocyte-specific splicing patterns in fibroblasts. Concomitantly, Ptbp1 depletion promoted cardiac transcriptome acquisition and increased iCM reprogramming efficiency. Additional quantitative analysis of our dataset revealed a strong correlation between the expression of each reprogramming factor and the progress of individual cells through the reprogramming process, and led to the discovery of new surface markers for the enrichment of iCMs. In summary, our single-cell transcriptomics approaches enabled us to reconstruct the reprogramming trajectory and to uncover intermediate cell populations, gene pathways and regulators involved in iCM induction.
科研通智能强力驱动
Strongly Powered by AbleSci AI