Reliable emotion recognition system based on dynamic adaptive fusion of forehead biopotentials and physiological signals

计算机科学 人工智能 支持向量机 前额 加权 模式识别(心理学) 悲伤 模式 情绪分类 语音识别 愤怒 心理学 社会学 外科 放射科 精神科 医学 社会科学
作者
Mahdi Khezri,Mohammad Firoozabadi,Ahmad R. Sharafat
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:122 (2): 149-164 被引量:67
标识
DOI:10.1016/j.cmpb.2015.07.006
摘要

In this study, we proposed a new adaptive method for fusing multiple emotional modalities to improve the performance of the emotion recognition system. Three-channel forehead biosignals along with peripheral physiological measurements (blood volume pressure, skin conductance, and interbeat intervals) were utilized as emotional modalities. Six basic emotions, i.e., anger, sadness, fear, disgust, happiness, and surprise were elicited by displaying preselected video clips for each of the 25 participants in the experiment; the physiological signals were collected simultaneously. In our multimodal emotion recognition system, recorded signals with the formation of several classification units identified the emotions independently. Then the results were fused using the adaptive weighted linear model to produce the final result. Each classification unit is assigned a weight that is determined dynamically by considering the performance of the units during the testing phase and the training phase results. This dynamic weighting scheme enables the emotion recognition system to adapt itself to each new user. The results showed that the suggested method outperformed conventional fusion of the features and classification units using the majority voting method. In addition, a considerable improvement, compared to the systems that used the static weighting schemes for fusing classification units, was also shown. Using support vector machine (SVM) and k-nearest neighbors (KNN) classifiers, the overall classification accuracies of 84.7% and 80% were obtained in identifying the emotions, respectively. In addition, applying the forehead or physiological signals in the proposed scheme indicates that designing a reliable emotion recognition system is feasible without the need for additional emotional modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助韶华舞光年采纳,获得10
刚刚
CipherSage应助张资阳采纳,获得10
2秒前
鬼小妞nice完成签到 ,获得积分10
2秒前
3秒前
科目三应助虚心烨磊采纳,获得10
3秒前
徐子扬完成签到,获得积分10
4秒前
4秒前
汉堡包应助jitanxiang采纳,获得10
5秒前
英俊的铭应助小黄人采纳,获得10
5秒前
好纠结完成签到 ,获得积分10
7秒前
8秒前
小马甲应助浅陌采纳,获得10
8秒前
徐子扬发布了新的文献求助10
8秒前
江湖笑完成签到,获得积分10
11秒前
如风随水发布了新的文献求助10
13秒前
开心罡完成签到 ,获得积分10
14秒前
赵李艺完成签到 ,获得积分10
14秒前
张巨锋完成签到 ,获得积分10
14秒前
14秒前
mz完成签到 ,获得积分10
15秒前
gu完成签到,获得积分10
17秒前
17秒前
小黄人发布了新的文献求助10
19秒前
22秒前
小朋友完成签到,获得积分10
23秒前
23秒前
jitanxiang发布了新的文献求助10
23秒前
英勇曼安发布了新的文献求助10
23秒前
jitanxiang完成签到,获得积分10
26秒前
27秒前
zxw发布了新的文献求助10
29秒前
30秒前
科研通AI5应助我会发光啊采纳,获得10
30秒前
ZTF完成签到,获得积分10
30秒前
33秒前
33秒前
33秒前
34秒前
浅陌发布了新的文献求助10
35秒前
共享精神应助pp0118采纳,获得10
36秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800701
求助须知:如何正确求助?哪些是违规求助? 3346044
关于积分的说明 10328318
捐赠科研通 3062548
什么是DOI,文献DOI怎么找? 1681011
邀请新用户注册赠送积分活动 807353
科研通“疑难数据库(出版商)”最低求助积分说明 763642