Comparison of Extractive Distillation and Pressure-Swing Distillation for Acetone−Methanol Separation

共沸物 萃取蒸馏 蒸馏 共沸蒸馏 化学 残液 变压吸附 间歇精馏 共沸混合物 连续蒸馏 沸点 聚光镜(光学) 沸腾 甲醇 分馏 热力学 色谱法 有机化学 制冷剂 萃取(化学) 热交换器 吸附 物理 光学 光源
作者
William L. Luyben
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:47 (8): 2696-2707 被引量:217
标识
DOI:10.1021/ie701695u
摘要

Two of the most common methods for separating a binary homogeneous azeotrope are pressure-swing distillation and extractive distillation. The former is effective if the composition of the azeotrope changes significantly with pressure. The latter method is effective if a suitable solvent can be found. This paper compares the steady-state design and the dynamic control of these two methods when applied to the acetone-methanol binary system. The minimum-boiling azeotrope at 1 atm contains 77.6 mol % acetone at 328 K. At 10 atm the azeotropic composition is 37.5 mol % acetone at 408 K, so pressure-swing separation is feasible. Extractive distillation is also feasible using water as the solvent. Both systems require two distillation columns. Purities of the two products are set at 99.5 mol %. Results show that the extractive distillation system has a 15% lower total annual cost. However, a third component (water) is introduced that appears as trace impurities in both the acetone and methanol products. It is also much more difficult to attain higher purities in the extractive distillation system than in the pressure-swing system because of ternary vapor−liquid equilibrium constraints. The dynamic controllabilities of the two alternative processes are quite similar. Steady-state designs and control structures are also developed for the two methods when the columns are heat integrated. Heat integration is straightforward in the pressure-swing system because the condenser temperature in the high-pressure column is 60 K higher than the base temperature in the low-pressure column. In the extractive distillation system, the pressure in the second solvent recovery column must be increased from 1 to 5 atm to provide the necessary temperature differential driving force.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李橘子发布了新的文献求助10
1秒前
Akim应助专注的问筠采纳,获得10
2秒前
彭于晏应助枫月流年采纳,获得10
5秒前
无限的葶完成签到,获得积分20
5秒前
天天发布了新的文献求助10
7秒前
LLJ完成签到,获得积分10
8秒前
阡陌完成签到 ,获得积分10
12秒前
姜汁树完成签到 ,获得积分10
13秒前
英姑应助silent采纳,获得10
14秒前
菠萝吹雪完成签到,获得积分10
14秒前
小白发布了新的文献求助10
15秒前
16秒前
bkagyin应助喜悦怀亦采纳,获得30
17秒前
19秒前
19秒前
Orangeade发布了新的文献求助10
20秒前
24秒前
ding应助科研通管家采纳,获得10
27秒前
wanci应助科研通管家采纳,获得10
27秒前
zmnzmnzmn应助科研通管家采纳,获得10
27秒前
27秒前
小二郎应助科研通管家采纳,获得10
27秒前
zmnzmnzmn应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
zmnzmnzmn应助科研通管家采纳,获得10
27秒前
wanci应助科研通管家采纳,获得10
27秒前
上官若男应助科研通管家采纳,获得10
27秒前
HEIKU应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
27秒前
甜甜映菡完成签到,获得积分10
29秒前
科研通AI5应助Orangeade采纳,获得10
30秒前
cloudyick完成签到,获得积分10
30秒前
Skyrin完成签到,获得积分0
30秒前
shine发布了新的文献求助10
35秒前
36秒前
科研通AI5应助heli采纳,获得10
36秒前
40秒前
搜集达人应助专注的问筠采纳,获得10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778901
求助须知:如何正确求助?哪些是违规求助? 3324431
关于积分的说明 10218443
捐赠科研通 3039495
什么是DOI,文献DOI怎么找? 1668204
邀请新用户注册赠送积分活动 798591
科研通“疑难数据库(出版商)”最低求助积分说明 758440