胶质发生
生物
祖细胞
Wnt信号通路
细胞生物学
室下区
神经干细胞
神经发生
连环蛋白
神经科学
干细胞
信号转导
作者
Bryan D. White,Ryan J. Nathe,Don O. Maris,Nghi K. Nguyen,Jamie M. Goodson,Randall T. Moon,Philip J. Horner
出处
期刊:Stem Cells
[Wiley]
日期:2009-12-03
卷期号:28 (2): 297-307
被引量:77
摘要
Abstract Wnt/β-catenin signaling can influence the proliferation and differentiation of progenitor populations in the hippocampus and subventricular zone, known germinal centers in the adult mouse brain. It is not known whether β-catenin signaling occurs in quiescent glial progenitors in cortex or spinal cord, nor is it known whether β-catenin is involved in the activation of glial progenitor populations after injury. Using a β-catenin reporter mouse (BATGAL mouse), we show that β-catenin signaling occurs in NG2 chondroitin sulfate proteoglycan+ (NG2) progenitors in the cortex, in subcallosal zone (SCZ) progenitors, and in subependymal cells surrounding the central canal. Interestingly, cells with β-catenin signaling increased in the cortex and SCZ following traumatic brain injury (TBI) but did not following spinal cord injury. Initially after TBI, β-catenin signaling was predominantly increased in a subset of NG2+ progenitors in the cortex. One week following injury, the majority of β-catenin signaling appeared in reactive astrocytes but not oligodendrocytes. Bromodeoxyuridine (BrdU) paradigms and Ki-67 staining showed that the increase in β-catenin signaling occurred in newly born cells and was sustained after cell division. Dividing cells with β-catenin signaling were initially NG2+; however, by four days after a single injection of BrdU, they were predominantly astrocytes. Infusing animals with the mitotic inhibitor cytosine arabinoside prevented the increase of β-catenin signaling in the cortex, confirming that the majority of β-catenin signaling after TBI occurs in newly born cells. These data argue for manipulating the Wnt/β-catenin pathway after TBI as a way to modify post-traumatic gliogenesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI