糖皮质激素
糖皮质激素受体
基因签名
医学
队列
免疫学
内科学
干扰素
基因
内分泌学
生物
基因表达
遗传学
作者
Melissa Northcott,Linden J. Gearing,Hieu T. Nim,Champa Nataraja,Paul J. Hertzog,Sarah A. Jones,Eric F. Morand
标识
DOI:10.1016/s2665-9913(21)00006-0
摘要
Background Glucocorticoids, used as a therapy in systemic lupus erythematosus (SLE), interact with the cytoplasmic glucocorticoid receptor to modulate gene transcription. Minimising the use of glucocorticoids is a goal in SLE; however, pharmacological measures to support clinical guidelines are scarce. We evaluated glucocorticoid-regulated genes for their potential use as biomarkers of glucocorticoid exposure in SLE. We examined interactions between changes in gene expression that are induced by glucocorticoids and type I interferon. Methods Genes regulated by glucocorticoids and type I interferon were analysed in relation to glucocorticoid exposure in adult patients meeting the American College of Rheumatology criteria for SLE from three cross-sectional cohorts: a local cohort from a tertiary hospital in Melbourne, VIC, Australia, and two public datasets (GSE49454, Hospital de la Conception, Marseille, France, and GSE88884, patients enrolled in a large, multicentre clinical trial). RNA sequencing was done using RNA from healthy donor leucocytes treated with the glucocorticoid dexamethasone, or type I interferon, or both. Findings Glucocorticoid-regulated genes were analysed in a local SLE cohort (n=18) and public dataset GSE49454 (n=62). Five genes correlated with glucocorticoid dose in both cohorts and were combined to make a glucocorticoid gene signature. Validity of the glucocorticoid gene signature was tested in the public dataset GSE88884 (n=1756). A dose-dependent association was observed with glucocorticoid dose (p<0·0001), and the glucocorticoid gene signature had moderate ability to identify patients taking high-dose glucocorticoid (area under the curve [AUC]=0·77) although was less discriminatory when including all doses (AUC=0·69). We saw no effect of glucocorticoid dose on type I interferon -regulated gene expression. Patients with a high type I interferon gene signature had reduced glucocorticoid gene signature expression compared with patients with a low type I interferon gene signature matched for glucocorticoid dose, suggesting type I interferon inhibits glucocorticoid-stimulated gene expression. In RNA sequencing experiments, type I interferon impaired the expression of glucocorticoid-induced genes, whereas dexamethasone had minimal effect on the expression of type I interferon-stimulated genes. We identified genes regulated by dexamethasone but not affected by type I interferon; combined signatures using these genes also showed moderate ability to distinguish patients taking glucocorticoids. Interpretation A gene signature for glucocorticoid exposure was identified, but the substantial effect of type I interferon on glucocorticoid-induced genes might limit its application in SLE. These data confirm the insensitivity of type I interferon-regulated genes to glucocorticoids, and together support the concept that type I interferon has a role in glucocorticoid resistance in SLE. Funding Lupus Research Alliance and Australian National Health and Medical Research Council.
科研通智能强力驱动
Strongly Powered by AbleSci AI