Laboratory Indicators Predict Axillary Nodal Pathologic Complete Response After Neoadjuvant Therapy in Breast Cancer

医学 列线图 内科学 乳腺癌 肿瘤科 新辅助治疗 多元分析 逻辑回归 腋窝淋巴结 病态的 癌症
作者
Peng Chen,Tong Zhao,Zhao Bi,Zhao-Peng Zhang,Li Xie,Yanbing Liu,Xingguo Song,Xianrang Song,Chunjian Wang,Yongsheng Wang
出处
期刊:Future Oncology [Future Medicine]
卷期号:17 (19): 2449-2460 被引量:6
标识
DOI:10.2217/fon-2020-1231
摘要

The purpose was to integrate clinicopathological and laboratory indicators to predict axillary nodal pathologic complete response (apCR) after neoadjuvant therapy (NAT). The pretreatment clinicopathological and laboratory indicators of 416 clinical nodal-positive breast cancer patients who underwent surgery after NAT were analyzed from April 2015 to 2020. Predictive factors of apCR were examined by logistic analysis. A nomogram was built according to logistic analysis. Among the 416 patients, 37.3% achieved apCR. Multivariate analysis showed that age, pathological grading, molecular subtype and neutrophil-to-lymphocyte ratio were independent predictors of apCR. A nomogram was established based on these four factors. The area under the curve (AUC) was 0.758 in the training set. The validation set showed good discrimination, with AUC of 0.732. In subtype analysis, apCR was 23.8, 47.1 and 50.8% in hormone receptor-positive/HER2-, HER2+ and triple-negative subgroups, respectively. According to the results of the multivariate analysis, pathological grade and fibrinogen level were independent predictors of apCR after NAT in HER2+ patients. Except for traditional clinicopathological factors, laboratory indicators could also be identified as predictive factors of apCR after NAT. The nomogram integrating pretreatment indicators demonstrated its distinguishing capability, with a high AUC, and could help to guide individualized treatment options.Lay abstract The purpose of this study was to integrate more pretreatment indicators, including clinicopathological factors and simple laboratory indicators, to predict axillary nodal pathologic complete response (apCR) after neoadjuvant therapy for breast cancer. The authors collected the pretreatment clinicopathological factors and laboratory indexes of 416 nodal-positive patients with breast cancer. The authors then built a nomogram to predict the therapeutic effect in axillary lymph nodes. Among 416 patients, 37.3% (155 of 416) achieved apCR. The results showed that age, pathological grading, molecular subtype and neutrophil-to-lymphocyte ratio were independent predictors of apCR. Based on these four factors, a nomogram was then built. This nomogram helped to predict apCR. In addition to traditional clinicopathological factors, laboratory indicators were also identified as predictive factors of apCR after neoadjuvant therapy. Integrating pretreatment indicators might help to predict apCR and guide individualized treatment options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理的天抒完成签到 ,获得积分10
1秒前
L1完成签到 ,获得积分10
2秒前
feimengxia完成签到 ,获得积分10
4秒前
8秒前
高大冷菱完成签到 ,获得积分10
11秒前
15秒前
guoxingliu完成签到,获得积分10
17秒前
lindahuang发布了新的文献求助10
21秒前
21秒前
Meng完成签到,获得积分10
29秒前
Tibbar完成签到 ,获得积分10
30秒前
lindahuang完成签到,获得积分20
30秒前
cdercder应助科研通管家采纳,获得10
38秒前
cdercder应助科研通管家采纳,获得10
38秒前
cdercder应助科研通管家采纳,获得10
38秒前
cdercder应助科研通管家采纳,获得10
38秒前
cdercder应助科研通管家采纳,获得10
38秒前
Zheng完成签到 ,获得积分10
49秒前
应樱完成签到 ,获得积分10
50秒前
50秒前
logolush完成签到 ,获得积分10
56秒前
忒寒碜完成签到,获得积分10
58秒前
zjq发布了新的文献求助20
1分钟前
榆木小鸟完成签到 ,获得积分10
1分钟前
自觉石头完成签到 ,获得积分10
1分钟前
从容的水壶完成签到 ,获得积分10
1分钟前
wulixin完成签到,获得积分10
1分钟前
月夕完成签到 ,获得积分10
1分钟前
nicheng完成签到 ,获得积分0
1分钟前
HK完成签到 ,获得积分10
1分钟前
爆米花应助lindahuang采纳,获得10
1分钟前
应然忆完成签到 ,获得积分10
1分钟前
每天都要开心完成签到 ,获得积分10
1分钟前
张小南完成签到,获得积分10
1分钟前
1分钟前
蓝莲花完成签到 ,获得积分10
1分钟前
洸彦完成签到 ,获得积分10
2分钟前
鞑靼完成签到 ,获得积分10
2分钟前
bigpluto完成签到,获得积分10
2分钟前
mufulee完成签到,获得积分10
2分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840870
求助须知:如何正确求助?哪些是违规求助? 3382770
关于积分的说明 10526510
捐赠科研通 3102643
什么是DOI,文献DOI怎么找? 1708930
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773632