Development of pre and post‐operative nomograms to predict individual survival for ideal liver resection candidates with hepatocellular carcinoma

列线图 医学 肝细胞癌 比例危险模型 内科学 肿瘤科 多元统计 肝切除术 多元分析 阶段(地层学) 队列 切除术 外科 机器学习 计算机科学 生物 古生物学
作者
Jinshu Zeng,Jianxing Zeng,Jingfeng Liu,Jinhua Zeng
出处
期刊:Liver International [Wiley]
卷期号:41 (12): 2974-2985 被引量:11
标识
DOI:10.1111/liv.15042
摘要

Abstract Background Liver resection is currently the only recommended treatment option for solitary hepatocellular carcinoma (HCC) at an early stage, with well‐preserved liver function and no clinically significant portal hypertension. However, this population is heterogeneous, rendering it crucial to develop a risk stratification tool. Therefore, this study aimed to develop preoperative and post‐operative nomograms to predict individual survival and stratify patient risk in the ideal candidates for liver resection. Methods A total of 1405 ideal liver resection candidates were recruited. Independent risk factors were identified by Cox regression model and used to establish two ideal liver resection for overall survival (IROS) nomograms in training cohort. Model performance was assessed by discrimination, calibration, clinical usefulness. The two model also compared with six other prognostic nomograms and six other staging systems. Results Multivariate COX analysis revealed that ALP, ln(AFP), NrLR, PNI, ln(tumor size), microvascular invasion, Edmondson‐Steiner grade and tumour capsular were the independent risk factors associated with mortality. 5 preoperative variables were incorporated to construct IROS‐pre model; All eight available variables were used to draw IROS‐post model. The C‐index, K‐index, time‐dependent AUC and DCA of the two models showed significantly better predictive performances than other models. The models could stratify patients into three different risk groups. The web‐based tools are convenient for clinical practice. Conclusions These two nomograms were developed to estimate survival probability and stratify three strata with significantly different outcomes, outperforming other models in training and validation cohorts, as well as different subgroups. Both IROS models will help guide individualized follow‐up.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
危机的听筠完成签到,获得积分10
2秒前
入暖完成签到,获得积分10
2秒前
Orange应助judy007采纳,获得10
3秒前
Ggogo发布了新的文献求助10
4秒前
ding应助niripsa采纳,获得10
4秒前
7秒前
dali完成签到 ,获得积分10
8秒前
Jasper应助我要发sci采纳,获得10
9秒前
13秒前
小贺发布了新的文献求助10
14秒前
wgglegg完成签到,获得积分10
15秒前
Chan0427完成签到,获得积分10
16秒前
17秒前
烟花应助zhoujin采纳,获得10
18秒前
Muhebbet发布了新的文献求助10
18秒前
打打应助秀儿采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
WWW7发布了新的文献求助10
20秒前
Kirito应助负责的方盒采纳,获得100
20秒前
24秒前
25秒前
26秒前
zzj1904发布了新的文献求助10
28秒前
Arrebol完成签到,获得积分10
32秒前
鱼鱼鱼鱼鱼完成签到 ,获得积分10
34秒前
sunny完成签到,获得积分10
35秒前
核桃发布了新的文献求助30
35秒前
量子星尘发布了新的文献求助10
36秒前
37秒前
He完成签到,获得积分10
39秒前
39秒前
君臣完成签到,获得积分20
40秒前
zhoujin发布了新的文献求助10
41秒前
43秒前
喵喵完成签到 ,获得积分10
43秒前
44秒前
研友_LJGpan完成签到,获得积分10
44秒前
领导范儿应助ali采纳,获得10
46秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4212326
求助须知:如何正确求助?哪些是违规求助? 3746427
关于积分的说明 11788597
捐赠科研通 3414295
什么是DOI,文献DOI怎么找? 1873525
邀请新用户注册赠送积分活动 928038
科研通“疑难数据库(出版商)”最低求助积分说明 837317