An ensemble learning method based on ordinal regression for COVID-19 diagnosis from chest CT

Softmax函数 序数回归 人工智能 计算机科学 二元分类 模式识别(心理学) 集成学习 机器学习 回归 深度学习 数学 统计 支持向量机
作者
Xiaodong Guo,Yiming Lei,Peng He,Wenbing Zeng,Ran Yang,Yinjin Ma,Peng Feng,Qing Lyu,Ge Wang,Hongming Shan
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (24): 244001-244001 被引量:11
标识
DOI:10.1088/1361-6560/ac34b2
摘要

Abstract Coronavirus disease 2019 (COVID-19) has brought huge losses to the world, and it remains a great threat to public health. X-ray computed tomography (CT) plays a central role in the management of COVID-19. Traditional diagnosis with pulmonary CT images is time-consuming and error-prone, which could not meet the need for precise and rapid COVID-19 screening. Nowadays, deep learning (DL) has been successfully applied to CT image analysis, which assists radiologists in workflow scheduling and treatment planning for patients with COVID-19. Traditional methods use cross-entropy as the loss function with a Softmax classifier following a fully-connected layer. Most DL-based classification methods target intraclass relationships in a certain class (early, progressive, severe, or dissipative phases), ignoring the natural order of different phases of the disease progression, i.e., from an early stage and progress to a late stage. To learn both intraclass and interclass relationships among different stages and improve the accuracy of classification, this paper proposes an ensemble learning method based on ordinal regression, which leverages the ordinal information on COVID-19 phases. The proposed method uses multi-binary, neuron stick-breaking (NSB), and soft labels (SL) techniques, and ensembles the ordinal outputs through a median selection. To evaluate our method, we collected 172 confirmed cases. In a 2-fold cross-validation experiment, the accuracy is increased by 22% compared with traditional methods when we use modified ResNet-18 as the backbone. And precision, recall, and F 1-score are also improved. The experimental results show that our proposed method achieves a better classification performance than the traditional methods, which helps establish guidelines for the classification of COVID-19 chest CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyc完成签到,获得积分10
1秒前
erdongsir完成签到,获得积分10
2秒前
3秒前
MBEye发布了新的文献求助10
3秒前
沐晴发布了新的文献求助30
4秒前
5秒前
5秒前
领导范儿应助专注的语堂采纳,获得10
6秒前
超帅的店员完成签到,获得积分10
6秒前
xulin完成签到 ,获得积分10
6秒前
猪猪hero应助黎明采纳,获得10
7秒前
7秒前
乐观小之应助默默若枫采纳,获得10
8秒前
9秒前
10秒前
忙碌的数学人完成签到 ,获得积分10
10秒前
TTD发布了新的文献求助10
10秒前
水木年华发布了新的文献求助10
10秒前
在水一方应助Yue采纳,获得10
10秒前
机灵觅双完成签到,获得积分10
11秒前
华仔应助《子非鱼》采纳,获得10
13秒前
张鑫隆完成签到,获得积分10
13秒前
斯文败类应助专注的语堂采纳,获得10
13秒前
香蕉觅云应助啦啦啦采纳,获得10
14秒前
十三十四十五完成签到,获得积分10
14秒前
yaning2022完成签到,获得积分10
14秒前
wang456完成签到,获得积分10
15秒前
15秒前
18秒前
机灵觅双发布了新的文献求助20
21秒前
li发布了新的文献求助10
22秒前
公孙朝雨完成签到 ,获得积分10
26秒前
丁鹏笑完成签到 ,获得积分0
28秒前
li完成签到,获得积分10
30秒前
勇士绿老师完成签到,获得积分10
31秒前
Alanni完成签到 ,获得积分10
35秒前
英俊的铭应助MBEye采纳,获得10
36秒前
Ava应助水木年华采纳,获得10
39秒前
41秒前
倾语发布了新的文献求助10
42秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Capitalism and Its Critics: A History: From the Industrial Revolution to AI 200
The Triumph of Economic Freedom: Debunking the Seven Myths of American Capitalism 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832915
求助须知:如何正确求助?哪些是违规求助? 3375336
关于积分的说明 10488703
捐赠科研通 3094953
什么是DOI,文献DOI怎么找? 1704149
邀请新用户注册赠送积分活动 819814
科研通“疑难数据库(出版商)”最低求助积分说明 771661