Globally and Locally Semantic Colorization via Exemplar-Based Broad-GAN

人工智能 计算机科学 模式识别(心理学) 图像(数学) 匹配(统计) 稀疏逼近 计算机视觉 数学 统计
作者
Haoxuan Li,Bin Sheng,Ping Li,Riaz Ali,C. L. Philip Chen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 8526-8539 被引量:57
标识
DOI:10.1109/tip.2021.3117061
摘要

Given a target grayscale image and a reference color image, exemplar-based image colorization aims to generate a visually natural-looking color image by transforming meaningful color information from the reference image to the target image. It remains a challenging problem due to the differences in semantic content between the target image and the reference image. In this paper, we present a novel globally and locally semantic colorization method called exemplar-based conditional broad-GAN, a broad generative adversarial network (GAN) framework, to deal with this limitation. Our colorization framework is composed of two sub-networks: the match sub-net and the colorization sub-net. We reconstruct the target image with a dictionary-based sparse representation in the match sub-net, where the dictionary consists of features extracted from the reference image. To enforce global-semantic and local-structure self-similarity constraints, global-local affinity energy is explored to constrain the sparse representation for matching consistency. Then, the matching information of the match sub-net is fed into the colorization sub-net as the perceptual information of the conditional broad-GAN to facilitate the personalized results. Finally, inspired by the observation that a broad learning system is able to extract semantic features efficiently, we further introduce a broad learning system into the conditional GAN and propose a novel loss, which substantially improves the training stability and the semantic similarity between the target image and the ground truth. Extensive experiments have shown that our colorization approach outperforms the state-of-the-art methods, both perceptually and semantically.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HH完成签到,获得积分10
刚刚
刚刚
可爱半山发布了新的文献求助10
1秒前
我是老大应助qin采纳,获得10
1秒前
蝴蝶完成签到,获得积分10
1秒前
厉飞羽发布了新的文献求助10
2秒前
3秒前
科研通AI6.1应助宁馨儿采纳,获得10
3秒前
3秒前
3秒前
tiantian完成签到,获得积分10
3秒前
辛勤的nana完成签到,获得积分10
4秒前
zhangexhiwu发布了新的文献求助10
5秒前
5秒前
隐形曼青应助小羊采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
隐形曼青应助young采纳,获得10
5秒前
安详忆梅发布了新的文献求助10
5秒前
周济完成签到,获得积分10
6秒前
6秒前
jim发布了新的文献求助10
6秒前
XBP完成签到,获得积分10
7秒前
卧冬完成签到,获得积分10
7秒前
奶油焖虾完成签到,获得积分20
7秒前
7秒前
木沐发布了新的文献求助10
7秒前
fan发布了新的文献求助10
8秒前
赘婿应助阔达的梨愁采纳,获得10
8秒前
Kaaaly完成签到 ,获得积分10
8秒前
8秒前
张思梦完成签到,获得积分10
8秒前
orixero应助李里哩采纳,获得10
8秒前
Owen完成签到,获得积分10
8秒前
小喜完成签到,获得积分10
9秒前
9秒前
忧心的碧发布了新的文献求助10
10秒前
hu完成签到,获得积分10
10秒前
10秒前
pei009完成签到,获得积分10
10秒前
周济发布了新的文献求助10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750825
求助须知:如何正确求助?哪些是违规求助? 5466125
关于积分的说明 15368187
捐赠科研通 4890033
什么是DOI,文献DOI怎么找? 2629516
邀请新用户注册赠送积分活动 1577711
关于科研通互助平台的介绍 1534073