已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Radiomics Models Based on Apparent Diffusion Coefficient Maps for the Prediction of High‐Grade Prostate Cancer at Radical Prostatectomy: Comparison With Preoperative Biopsy

前列腺切除术 医学 前列腺癌 有效扩散系数 无线电技术 磁共振成像 活检 前列腺 前列腺活检 放射科 核医学 接收机工作特性 癌症 内科学
作者
Chao Han,Shuai Ma,Xiang Liu,Yi Liu,Changxin Li,Yaofeng Zhang,Xiaodong Zhang,Xiaoying Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:54 (6): 1892-1901 被引量:26
标识
DOI:10.1002/jmri.27565
摘要

It is feasible to use magnetic resonance (MR)-based radiomics to distinguish high-grade from low-grade prostate cancer (PCa), but radiomics model performance based on fully automated segmentation remains unknown.To develop and test radiomics models based on manually or automatically gained masks on apparent diffusion coefficient (ADC) maps to predict high-grade (Gleason score ≥ 4 + 3) PCa at radical prostatectomy (RP).Retrospective.A total of 176 patients (94 high-grade PCa and 82 low-grade PCa) with complete RP, preoperative biopsy, and multiparametric magnetic resonance imaging (mpMRI) were retrospectively recruited and randomly divided into training (N = 123) and test (N = 53) cohorts.Using a 3.0-T MR scanner, ADC maps were calculated from diffusion-weighted imaging (b values = 0, 1400 s/mm2 , echo planar imaging).Two radiologists segmented the whole prostate gland and the most index prostate lesion. Automatic segmentation of the prostate and the lesion were performed. Four radiomics models were constructed using four masks (manual/automatic prostate gland/PCa lesion segmentation). According to the standard reference of the RP histopathologic assessment, the performance of each radiomics models was compared with that of biopsy and Prostate Imaging Reporting and Data System version 2.1 (PI-RADS) assessment.A receiver operating characteristic curve analysis was employed to estimate the area under the curve (AUC) values of the models. The AUCs of the four models, biopsy, and PI-RADS assessment were compared using the DeLong test.The four radiomics models yielded AUCs of 0.710, 0.731, 0.726, and 0.709 in the test cohort, respectively; biopsy and PI-RADS assessment yielded AUCs of 0.793 and 0.680, respectively. No significant differences were found among model, biopsy, and PI-RADS assessment comparisons (P = 0.132-0.988).To distinguish high-grade from low-grade PCa, radiomics models based on automatic segmentation on ADC maps exhibit approximately the same diagnostic efficacy as manual segmentation and biopsy, highlighting the possibility of a fully automatic workflow combining automated segmentation with radiomics analysis.4 TECHNICAL EFFICACY: Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
柚子完成签到 ,获得积分10
刚刚
呼吸小研狗完成签到,获得积分10
1秒前
1秒前
你喜欢什么样子的我演给你看完成签到 ,获得积分10
2秒前
风里有声音完成签到 ,获得积分10
2秒前
从容甜瓜完成签到 ,获得积分10
3秒前
3秒前
momi完成签到 ,获得积分10
4秒前
可爱无招完成签到 ,获得积分20
4秒前
飞飞完成签到,获得积分10
4秒前
kaiqiang完成签到,获得积分0
4秒前
桃酥完成签到,获得积分10
4秒前
王博发布了新的文献求助10
5秒前
两个榴莲完成签到,获得积分0
5秒前
上官完成签到 ,获得积分10
6秒前
闪闪蜜粉完成签到 ,获得积分10
6秒前
CaoJing完成签到 ,获得积分10
6秒前
hyg发布了新的文献求助10
6秒前
感动莞完成签到 ,获得积分10
7秒前
gtgyh完成签到 ,获得积分10
8秒前
情怀应助edtaa采纳,获得10
8秒前
桃酥发布了新的文献求助10
8秒前
xuzj完成签到,获得积分10
9秒前
cnuwxc完成签到,获得积分10
10秒前
123完成签到 ,获得积分10
10秒前
崔佳鑫完成签到 ,获得积分10
10秒前
zhongbo完成签到,获得积分10
11秒前
鲁丁丁完成签到 ,获得积分10
12秒前
多亿点完成签到 ,获得积分10
12秒前
艺术家完成签到 ,获得积分10
13秒前
hzauhzau完成签到 ,获得积分10
14秒前
A水暖五金批发张哥完成签到,获得积分10
14秒前
冷酷的闹闹完成签到 ,获得积分10
15秒前
hyg完成签到,获得积分10
15秒前
辣辣完成签到,获得积分10
15秒前
IU冰冰完成签到 ,获得积分10
15秒前
王w完成签到 ,获得积分10
16秒前
九黎完成签到 ,获得积分10
16秒前
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4123881
求助须知:如何正确求助?哪些是违规求助? 3661751
关于积分的说明 11589829
捐赠科研通 3362373
什么是DOI,文献DOI怎么找? 1847535
邀请新用户注册赠送积分活动 911983
科研通“疑难数据库(出版商)”最低求助积分说明 827809

今日热心研友

eric888
400
大龙哥886
2 10
zchchem
1
Holy
10
情怀
10
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10