GR-LOAM: LiDAR-based sensor fusion SLAM for ground robots on complex terrain

计算机科学 里程计 惯性测量装置 计算机视觉 人工智能 点云 激光雷达 里程表 机器人 同时定位和映射 编码器 基本事实 移动机器人 遥感 地理 操作系统
作者
Yun Su,Ting Wang,Ting Wang,Chen Yao,Zhidong Wang
出处
期刊:Robotics and Autonomous Systems [Elsevier BV]
卷期号:140: 103759-103759 被引量:37
标识
DOI:10.1016/j.robot.2021.103759
摘要

Simultaneous localization and mapping is a fundamental process in robot navigation. We focus on LiDAR to complete this process in ground robots traveling on complex terrain by proposing GR-LOAM, a method to estimate robot ego-motion by fusing LiDAR, inertial measurement unit (IMU), and encoder measurements in a tightly coupled scheme. First, we derive a odometer increment model that fuses the IMU and encoder measurements to estimate the robot pose variation on a manifold. Then, we apply point cloud segmentation and feature extraction to obtain distinctive edge and planar features. Moreover, we propose an evaluation algorithm for the sensor measurements to detect abnormal data and reduce their corresponding weight during optimization. By jointly optimizing the cost derived from the LiDAR, IMU, and encoder measurements in a local window, we obtain low-drift odometry even on complex terrain. We use the estimated relative pose in the local window to reevaluate the matching distance across features and remove dynamic objects and outliers, thus refining the features before being fed to a mapping thread and increasing the mapping efficiency. In the back end, GR-LOAM uses the refined point cloud and tightly couples the IMU and encoder measurements with ground constraints to further refine the estimated pose by aligning the features on a global map. Results from extensive experiments performed in indoor and outdoor environments using real ground robot demonstrate the high accuracy and robustness of the proposed GR-LOAM for state estimation of ground robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
orixero应助Rg采纳,获得10
3秒前
地狱跳跳虎完成签到,获得积分10
4秒前
刘澳发布了新的文献求助10
4秒前
开朗曲奇发布了新的文献求助10
4秒前
Stronger完成签到,获得积分20
5秒前
崔风机完成签到,获得积分20
6秒前
丰富广缘发布了新的文献求助10
6秒前
loewy完成签到,获得积分10
6秒前
彭于晏应助王志远采纳,获得10
6秒前
8秒前
8秒前
机灵柚子应助采影子采纳,获得10
8秒前
香蕉觅云应助yy采纳,获得10
9秒前
9秒前
乐乐应助活泼的朝雪采纳,获得10
9秒前
9秒前
yaya关注了科研通微信公众号
10秒前
10秒前
11秒前
cdercder应助着急的雁露采纳,获得10
11秒前
honey发布了新的文献求助10
12秒前
甜甜冷菱发布了新的文献求助10
12秒前
12秒前
lll发布了新的文献求助10
12秒前
共享精神应助墨倾池采纳,获得10
12秒前
12秒前
14秒前
糕糕完成签到 ,获得积分0
14秒前
大风起兮发布了新的文献求助10
14秒前
alice发布了新的文献求助10
15秒前
Yueze发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
springovo完成签到,获得积分10
16秒前
浩西发布了新的文献求助10
16秒前
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814715
求助须知:如何正确求助?哪些是违规求助? 3358800
关于积分的说明 10397538
捐赠科研通 3076183
什么是DOI,文献DOI怎么找? 1689750
邀请新用户注册赠送积分活动 813213
科研通“疑难数据库(出版商)”最低求助积分说明 767548