Membrane bending by protein phase separation

膜曲率 生物物理学 细胞器生物发生 细胞膜弹性 小泡 细胞膜 膜蛋白 细胞生物学 化学 整体膜蛋白 外周膜蛋白 生物 生物发生 生物化学 基因
作者
Yuan Feng,Haleh Alimohamadi,Brandon Bakka,Andrea N. Trementozzi,Kasey J. Day,Nicolas L. Fawzi,Padmini Rangamani,Jeanne C. Stachowiak
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:118 (11) 被引量:124
标识
DOI:10.1073/pnas.2017435118
摘要

Membrane bending is a ubiquitous cellular process that is required for membrane traffic, cell motility, organelle biogenesis, and cell division. Proteins that bind to membranes using specific structural features, such as wedge-like amphipathic helices and crescent-shaped scaffolds, are thought to be the primary drivers of membrane bending. However, many membrane-binding proteins have substantial regions of intrinsic disorder which lack a stable three-dimensional structure. Interestingly, many of these disordered domains have recently been found to form networks stabilized by weak, multivalent contacts, leading to assembly of protein liquid phases on membrane surfaces. Here we ask how membrane-associated protein liquids impact membrane curvature. We find that protein phase separation on the surfaces of synthetic and cell-derived membrane vesicles creates a substantial compressive stress in the plane of the membrane. This stress drives the membrane to bend inward, creating protein-lined membrane tubules. A simple mechanical model of this process accurately predicts the experimentally measured relationship between the rigidity of the membrane and the diameter of the membrane tubules. Discovery of this mechanism, which may be relevant to a broad range of cellular protrusions, illustrates that membrane remodeling is not exclusive to structured scaffolds but can also be driven by the rapidly emerging class of liquid-like protein networks that assemble at membranes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助闻歌采纳,获得30
1秒前
huangbing123完成签到 ,获得积分10
3秒前
KK完成签到,获得积分10
3秒前
4秒前
西风发布了新的文献求助10
5秒前
8秒前
9秒前
烟花应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
11秒前
元万天完成签到,获得积分10
11秒前
breezelf完成签到 ,获得积分10
12秒前
13秒前
满意的柏柳完成签到 ,获得积分10
14秒前
14秒前
15秒前
lalala发布了新的文献求助10
18秒前
阉太狼完成签到,获得积分10
19秒前
郝小欣发布了新的文献求助20
20秒前
GZX发布了新的文献求助10
21秒前
好学者完成签到 ,获得积分10
23秒前
自由的花生完成签到,获得积分10
27秒前
dqz发布了新的文献求助10
28秒前
kk完成签到 ,获得积分10
29秒前
和易完成签到 ,获得积分10
29秒前
29秒前
天才小能喵应助远方采纳,获得10
29秒前
31秒前
GZX完成签到,获得积分10
32秒前
32秒前
Leexxxhaoo完成签到,获得积分10
33秒前
33秒前
cuizaixu发布了新的文献求助10
36秒前
Lesley完成签到 ,获得积分10
36秒前
活力不悔发布了新的文献求助10
40秒前
Yuppies发布了新的文献求助10
40秒前
牟白容完成签到,获得积分10
43秒前
NexusExplorer应助Yuppies采纳,获得10
45秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2477006
求助须知:如何正确求助?哪些是违规求助? 2140858
关于积分的说明 5456868
捐赠科研通 1864174
什么是DOI,文献DOI怎么找? 926718
版权声明 562846
科研通“疑难数据库(出版商)”最低求助积分说明 495833